
Trajectory Optimization for Autonomous Flying Base Station via
Reinforcement Learning

Harald Bayerlein, Paul de Kerret and David Gesbert
Communication Systems Department, EURECOM

Autonomous UAV Base Station

•Quadcopter UAV acts as a relay between users
and a stationary transmitter

•Useful for dynamic network deployment and
fast response to varying demand, e.g. in
disaster situations

•System performance mainly depends on UAV
trajectory

yTrajectory planning must optimize link quality
while observing constraint on flying time!

System Model

•UAV position with constant altitude and
constant velocity V , flying time T :

x :
[0, T]→ R
t→ x(t)

 y :
[0, T]→ R
t→ y(t)

s.t. x(0) = x0, y(0) = y0

x(T) = xf , y(T) = yf

•Pathloss:
L = dk(t)−α · 10XRayleigh/10 · βshadow

dk(t) =
√
H2 + (x(t)− ak)2 + (y(t)− bk)2

•Orthogonal point-to-point channel with
information rate for k-th user

Rk(t) = log2

1 + P

N
· L

yMaximization problem over K users:

max
x(t),y(t)

∫ T
t=0

K∑
k=1

Rk(t)dt

yUse Reinforcement Learning to learn optimal
strategy

Reinforcement Learning

Main idea: an agent in an environment
takes actions and tries to maximize the re-
ward it perceives subsequently

•Modelled as finite MDP 〈S,A, P,R, γ〉
• Policy

π(a|s) = P [At = a|St = s]
• Action-value function

Qπ(s, a) = Eπ{Rt | st = s, at = a}
yOptimal policy π∗(a|s) = argmaxaQπ∗(s, a)

Q-Learning [1]

Bellman Optimality Condition:
Qπ∗(st, at) = r∗t + γmax

a
Qπ∗(st+1, a)

ySolve Bellman Equation iteratively
•Qπ(st, at) is updated after carrying out
action at and receiving reward rt for it
Qπ(st, at)← Qπ(st, at)+

α
(
rt + γmax

a
Qπ(st+1, a)−Qπ(st, at)

)
•Discount factor γ ∈ [0, 1) balances
short-term/ long-term reward

•Learning rate α ∈ [0, 1] controls to what
extend old information is overridden

•Q-learning finds an optimal policy for any
finite MDP

yCompare Q-function approximators: lookup
table (Q-table) and neural network (Q-net)

Application of Q-Learning to Trajectory Planning

Figure: Final trajectory after 800,000 training episodes for
the Q-table approach, whereas 27,000 suffice for Q-net

Figure: Expected sum rate over training time

Learning Results

yAgent finds maximum cumulative rate point
yMinimum shadowing trajectory is learned
yAgent learns to return autonomously

Extensions

•Consideration of relaying function
•Dynamically changing environment
•Trajectory energy efficiency

Q-Learning with NN: Q-Net [2]

•Use neural network (NN) with parameters θ
to approximate Q-function:

Qπ(s, a; θ) ≈ Q∗(s, a)
•Minimize loss function at each iteration i:

Li(θi) = E[(
target Q-value︷ ︸︸ ︷

rt + γ ·max
a′

Q(st+1, a
′; θi)

−Q(s, a : θi))2]
•Neural network model:

xt
yt

t

Q-value #1
Q-value #2
Q-value #3
Q-value #4... ...

Hidden
layer 1

Hidden
layer 2Input

layer
Output
layer

[1] C. J. C. H. Watkins and P. Dayan, "Q-learning",
Machine Learning, vol. 8, no. 3-4, 1992.

[2] V. Mnih et al., "Human-level control through deep
reinforcement learning," Nature, no. 7540, 2015.

