Trajectory Optimization for Autonomous Flying Base Station via
Reinforcement Learning
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= Quadcopter UAV acts as a relay between users Learning
and a stationary transmitter d = argmax E[S R(t)]
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= Usetul for dynamic network deployment and
fast response to varying demand, e.g. in
disaster situations

« System performance mainly depends on UAV
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« Orthogonal point-to-point channel with
information rate for k-th user
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short-term/ long-term reward

N . Moc%elled s finite MDP (5, 4, P, R, 7) « Learning rate o € |0, 1| controls to what
> Maximization problem over K users: + Policy extend old information is overridden
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Compare Q-function approximators: lookup

- - - - Q"(s,a) = Ex{Rt | st = s,at = af
Use Reinforcement Learning to learn optimal table (Q-table) and neural network (Q-net)

strategy Optimal policy 7*(a|s) = argmax, Q™ (s, a)

Application of Q-Learning to Trajectory Planning
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> Minimum shadowing trajectory is learned
"> Agent learns to return autonomously
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Figure: Final trajectory after 800,000 training episodes for « Dynamically changing environment

the Q-table approach, whereas 27,000 suffice for Q-net « Trajectory energy efficiency



