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Introduction, Related Work and Objective

z Multiplexing gain: pertains to gradient at which transmission rate supported
by system increases with logarithm of SNR.

z Diversity gain: pertains to rate at which PEP decays with logarithm of SNR.

z Both gains are highly desirable but their individual maxima cannot be
achieved simultaneously.

z A fundamental tradeoff whereby an increase in one incurs a strict decrease
in the other.

z Related work:
◮ A new asymptotic upper bound on the symbol error rate of STBCs is

derived. This bound is based on the distance spectra of the equivalent
Euclidean codes introduced (Geyer et al’2015).

◮ An analysis characterized the diversity-multiplexing tradeoff for particular
STBCs, but does not characterize the tradeoff between their actual PEPs
and transmission rates (Dembo et al’1992).

z Objective:
◮ Derive a tradeoff between actual PEP, rather than diversity gain, and

actual transmission rate, rather than multiplexing gain, for two specific
STBCs: Alamouti and SP (2) codes.

System Model and System Parameters

z MIMO system with Nt transmit antennas and Nr receive antennas.

z Quasi static fading channels which are i.i.d complex Gaussian distributed
with zero mean and unit variance.

z Transmitter sends information in blocks of T consecutive time slots.

z Received signal:
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z Transmitted power: P , transmitted codeword: S ∈ C
T ×Nt, channel matrix:

H ∈ C
Nt×Nr, and additive noise: N ∈ C

T ×Nr.

z ML detector:
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z PEP, using ML detector when P
4N0

≫ 1:

Pr(Si → Sj) ≤
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−Nr, Ωij = (Si − Sj)

†(Si − Sj).

z For Alamouti and SP (2) STBCs: Ωij is full rank.

PEP and Rate Tradeoff for Alamouti Code

z Derive bounds on right side hand of PEP, PEP and transmission rate R

tradeoff:

z Alamouti STBC:
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◮ Theorem 1: PEP upper bound when symbols are chosen from uniform
M -PSK constellation:

PEP1 = Pr(Si − Sj) ≤










P

2N0











−2Nr 1

sin4Nr(π2−R)
, R = log2 M.

PEP and Rate Tradeoff for SP (2) Code

z SP (2) STBC:
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◮ Integers kr, lr ∈ {0, . . . , M1 − 1},mr, nr ∈ {0, . . . , M2 − 1}, M1 and M2

denote the cardinality of PSK constellations underlying the SP (2) code.
◮ Choosing M1 and M2 to be odd and co-prime ensures that the SP (2)

STBC achieves maximal diversity.
◮ Theorem 2: PEP upper bound when M1 and M2 are co-prime:

PEP2 = Pr(Si − Sj) ≤
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Proof of Theorem 2

z Proof of Theorem 2 involves:
◮ Lemma 1: Two constellations, M1-PSK and M2-PSK, where M1 and

M2 are two co-prime integers. The minimum non-zero angle between any
two symbols drawn from these constellations is |∆θmin| = 2π

M1M2

.
◮ Fermat’ s Little Theorem in Number Theory is used to prove this lemma
(Adams et al’1976).

◮ Fermat’ s Little Theorem: if p is a prime number, then for any integer a:

ap ≡ a (mod p).

◮ Lemma 2: Let M1 and M2 be co-prime, then for any integer
k ∈ {1, . . . , M1 − 1}, | sin(4πk

M1

)| > | sin( 2π
M1M2

)| and

| sin(2πk
M1

)| > | sin( 2π
M1M2

)|.

Comments on The Results

z The expressions for the upper bound on the PEP of Alamouti STBC and
SP (2) STBCs expose inherent rate-performance tradeoff exhibited by
these codes.

z For a given number of receive antennas, Nr, and a transmit power, P , PEP
bound of the SP (2) STBC grows faster with transmission rate R than its
Alamouti counterpart.

z This suggests: for fixed Nr and P ,
◮ at lower rates: it is more beneficial to use SP (2) STBC,
◮ at higher rates: Alamouti STBC is more beneficial even though it uses

half the number of transmit antennas.

Numerical Result
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Figure: PEP upper bound vs. rate

Simulation
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Figure: BLER vs. power.

Conclusion

z Derived upper bounds on PEP of two popular STBCs: Alamouti and
SP (2) STBCs.

z These bounds used to obtain a trade-off between transmission rate and PEP
achieved by these STBCs.

z Showed that, at high rates, Alamouti STBC outperforms SP (2) STBC,
even though SP (2) STBC has twice diversity gain as its Alamouti
counterpart.

z Analysis proposed herein might be used to optimize design of the SP (2)
code, for example by using an appropriate rotation of constellation.


