On the tradeoff between rate and pairwise error performance of Alamouti and SP(2) space-time block codes

Salime Bameri^{*}, Ramy H. Gohary[†], Siamak Talebi^{*}, and Ioannis Lambadaris[†]

*Electrical Engineering Dep., Shahid Bahonar University of Kerman, Kerman, Iran and [†]Systems and Computer Engineering Dept., Carleton University, Ottawa, ON, Canada

25–28 June 2018

IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) 2018

Kalamata, Greece

Introduction, Related Work and Objective

- Multiplexing gain: pertains to gradient at which transmission rate supported by system increases with logarithm of SNR.
- Diversity gain: pertains to rate at which PEP decays with logarithm of SNR. Both gains are highly desirable but their individual maxima cannot be achieved simultaneously.

Proof of Theorem 2

Proof of Theorem 2 involves:

Lemma 1: Two constellations, M_1 -PSK and M_2 -PSK, where M_1 and M_2 are two co-prime integers. The minimum non-zero angle between any two symbols drawn from these constellations is $|\Delta \theta_{\min}| = \frac{2\pi}{M_1 M_2}$.

A fundamental tradeoff whereby an increase in one incurs a strict decrease in the other.

Related work:

- A new asymptotic upper bound on the symbol error rate of STBCs is derived. This bound is based on the distance spectra of the equivalent Euclidean codes introduced (Geyer et al'2015).
- An analysis characterized the diversity-multiplexing tradeoff for particular STBCs, but does not characterize the tradeoff between their actual PEPs and transmission rates (Dembo et al'1992).

Objective:

Derive a tradeoff between actual PEP, rather than diversity gain, and actual transmission rate, rather than multiplexing gain, for two specific STBCs: Alamouti and SP(2) codes.

System Model and System Parameters

- \bowtie MIMO system with N_t transmit antennas and N_r receive antennas.
- Quasi static fading channels which are i.i.d complex Gaussian distributed with zero mean and unit variance.
- \checkmark Transmitter sends information in blocks of T consecutive time slots.
- Received signal:

$\mathbf{V} = \begin{bmatrix} P \\ - \end{bmatrix} \mathbf{S} \mathbf{H} + \mathbf{N}$

- Fermat's Little Theorem in Number Theory is used to prove this lemma (Adams et al'1976).
- Fermat's Little Theorem: if p is a prime number, then for any integer a:

 $a^p \equiv a \pmod{p}$.

Lemma 2: Let M_1 and M_2 be co-prime, then for any integer $k \in \{1, \ldots, M_1 - 1\}, |\sin(\frac{4\pi k}{M_1})| > |\sin(\frac{2\pi}{M_1M_2})|$ and $|\sin(\frac{2\pi k}{M_1})| > |\sin(\frac{2\pi}{M_1M_2})|.$

Comments on The Results

- The expressions for the upper bound on the PEP of Alamouti STBC and SP(2) STBCs expose inherent rate-performance tradeoff exhibited by these codes.
- For a given number of receive antennas, N_r , and a transmit power, P, PEP bound of the SP(2) STBC grows faster with transmission rate R than its Alamouti counterpart.
- \clubsuit This suggests: for fixed N_r and P,
 - \blacktriangleright at lower rates: it is more beneficial to use SP(2) STBC,
 - ▶ at higher rates: Alamouti STBC is more beneficial even though it uses half the number of transmit antennas.

Numerical Result

$$\mathbf{I} = \sqrt{\frac{N_t}{N_t}} \mathbf{J} \mathbf{I} + \mathbf{I} \mathbf{v} \, .$$

Transmitted power: P, transmitted codeword: $S \in \mathbb{C}^{T \times N_t}$, channel matrix: $\boldsymbol{H} \in \mathbb{C}^{N_t \times N_r}$, and additive noise: $\boldsymbol{N} \in \mathbb{C}^{T \times N_r}$. **ML** detector:

$$\hat{\boldsymbol{S}} = \arg\min_{\boldsymbol{S}} \|\boldsymbol{Y} - \sqrt{\frac{P}{N_t}}\boldsymbol{S}\boldsymbol{H}\|_F^2.$$

PEP, using ML detector when $\frac{P}{4N_0} \gg 1$:

$$\Pr(\boldsymbol{S}_i \to \boldsymbol{S}_j) \le \left(\frac{P}{4N_0}\right)^{-N_t N_r} \det(\boldsymbol{\Omega}_{ij})^{-N_r}, \quad \boldsymbol{\Omega}_{ij} = (\boldsymbol{S}_i - \boldsymbol{S}_j)^{\dagger} (\boldsymbol{S}_i - \boldsymbol{S}_j)$$

For Alamouti and SP(2) STBCs: Ω_{ii} is full rank.

PEP and Rate Tradeoff for Alamouti Code

- \mathbf{k} Derive bounds on right side hand of PEP, PEP and transmission rate \mathbf{R} tradeoff:
- Alamouti STBC:

$$m{S}_{r} = rac{1}{\sqrt{2}} egin{bmatrix} s_{1}^{(r)} & s_{2}^{(r)} \ -\overline{s}_{2}^{(r)} & \overline{s}_{1}^{(r)} \end{bmatrix}$$

Theorem 1: PEP upper bound when symbols are chosen from uniform M-PSK constellation:

$$\mathsf{PEP}_1 = \Pr(\mathbf{S}_i - \mathbf{S}_j) \le \left(\frac{P}{2N_0}\right)^{-2N_r} \frac{1}{\sin^{4N_r}(\pi 2^{-R})}, \ R = \log_2 M.$$

Figure: PEP upper bound vs. rate

Simulation

PEP and Rate Tradeoff for SP(2) Code

$\mathbf{H} SP(2)$ STBC:

- ▶ Integers $k_r, l_r \in \{0, \ldots, M_1 1\}, m_r, n_r \in \{0, \ldots, M_2 1\}, M_1$ and M_2 denote the cardinality of PSK constellations underlying the SP(2) code. \blacktriangleright Choosing M_1 and M_2 to be odd and co-prime ensures that the SP(2)STBC achieves maximal diversity.
- **Theorem 2**: PEP upper bound when M_1 and M_2 are co-prime:

 $\mathsf{PEP}_{2} = \Pr(\mathbf{S}_{i} - \mathbf{S}_{j}) \le \left(\frac{P}{N_{0}}\right)^{-4N_{r}} \frac{1}{\sin^{4N_{r}}(\pi 2^{-2R})}, \ R = \frac{1}{2}\log_{2}\left(M_{1}M_{2}\right)$

Figure: BLER vs. power.

Conclusion

- Derived upper bounds on PEP of two popular STBCs: Alamouti and SP(2) STBCs.
- These bounds used to obtain a trade-off between transmission rate and PEP achieved by these STBCs.
- \clubsuit Showed that, at high rates, Alamouti STBC outperforms SP(2) STBC, even though SP(2) STBC has twice diversity gain as its Alamouti counterpart.
- Analysis proposed herein might be used to optimize design of the SP(2)code, for example by using an appropriate rotation of constellation.