

Efficient Techniques for Broadcast of System Information in mmWave Communication Systems

Kamal Biswas¹, Saif Khan Mohammed¹, Erik G. Larsson²

¹Indian Institute of Technology, Delhi, India^{, 2}Linköping University, Sweden

Introduction

- Traditional way of broadcasting S.I.
- S.I.: Overhead, e.g. MIB in LTE has a 3% overhead for a system b.w. of 1.08 MHz.
- Non-orthogonal Broadcast Strategy:
- Advantage of massive MIMO:

Broadcast S.I. in Large antenna array the high dimensional and null space of the a few scheduled

 ST_k

IT

(W-1,n) $g_{k,m,n}$

 $m_{n,n}$

(1,n)

 φ_k

Orthogonal Broadcast Strategy (OBS)

- In OBS a fraction $0 < \epsilon < 1$ of total DOF's is reserved for broadcast of S.I.
- The per-DoF information rate to the k^{th} S-terminal and an Iterminal:

$$r_{k}' = (1 - \epsilon) \log_{2} \left(1 + \frac{p_{b}' |\mathbf{g}_{k}^{T} \mathbf{v}_{k}^{*}|^{2}}{\sigma^{2} + p_{b}' \sum_{i=1, i \neq k}^{K} |\mathbf{g}_{k}^{T} \mathbf{v}_{i}^{*}|^{2}} \right)$$
$$r_{l}' = \epsilon \log_{2} \left(1 + p_{l}' ||\mathbf{h}^{T} \mathbf{U}||^{2} / M' \sigma^{2} \right)$$

channel matrix to S.T.'s.

System Model

- mmWave LOS channels having only one strong path
- Channel gain from BS to kth S-terminal: $\mathbf{g}_{k} \triangleq \left[g_{k,0,0}, \dots, g_{k,W-1,0}, \dots, g_{k,0,H-1}, \dots, g_{k,W-1,H-1}\right]^{T}$ $g_{k,m,n} = \sqrt{\beta_k} e^{j\alpha_k} e^{j\frac{2\pi d}{\lambda}} (m\sin\phi_k\sin\theta_k + n\cos\theta_k)$ $Z \uparrow \quad UPA \text{ at }BS$ $\square ST_K$
- The channel matrix from BS to all the K S.T.'s

 $\mathbf{G} = \left[\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_K\right]^T$

• Channel gain from BS to an I-terminal $\mathbf{h} \triangleq \left[h_{0,0}, \dots, h_{W-1,0}, \dots, h_{0,H-1}, \dots, h_{W-1,H-1} \right]^{T}$ $h_{m,n} = \sqrt{\beta_I} e^{j\alpha_I} e^{j\frac{2\pi d}{\lambda}} (m\sin\phi_I\sin\theta_I + n\cos\theta_I)$

Total average transmit power in OBS: $P'_T \triangleq \epsilon p'_I + (1 - \epsilon) p'_h$.

Asymptotic Performance Analysis $(W \rightarrow \infty, H \rightarrow \infty)$

• **Theorem 1:** For fixed $0 < \epsilon < 1$, a fixed per-DOF information rate $r_k = R^{\infty}$, k = 1, ..., K to each S-terminal and a fixed rate R_I^{∞} to an Iterminal, the ratio of the required total transmit power for OBS to that for NoBS is asymptotically ($(W, H) \rightarrow \infty$) given by

$$\mu(\epsilon, R_I^{\infty}) \triangleq \lim_{(W,H) \to \infty} \frac{P_T'}{P_T} = \epsilon \left(2^{R_I^{\infty}/\epsilon} - 1 \right) / \left(2^{R_I^{\infty}} - 1 \right)$$

• Further, the asymptotic expression is a good approximation for this ratio for sufficiently large M, i.e.

$$M \gg \sum_{i=1}^{K} \frac{\beta_I}{\beta_i} \max\left[\frac{2^{R^{\infty}} - 1}{2^{R_I^{\infty}} - 1}, \frac{(1 - \epsilon)\left(2^{R^{\infty}/(1 - \epsilon)} - 1\right)}{\epsilon\left(2^{R_I^{\infty}/\epsilon} - 1\right)}\right]$$

• Corollary 1: For any $R_I^{\infty} > 0$ and $0 < \epsilon < 1$, the asymptotic ratio $\mu(\epsilon, R_I^{\infty})$ is always greater than one, i.e., $\mu(\epsilon, R_I^\infty) > 1$

• Assumption: Perfect CSI at BS for the channel to S-terminals and no CSI for the channels to the I-terminals.

Non-orthogonal Broadcast Strategy (NoBS)

• The vector transmitted from the BS on the t^{th} DOF:

- Total transmit power $P_T \triangleq p_b + p_I$
- $\mathbf{U} \in \mathbb{C}^{M \times M'}$ is chosen s.t. $\mathbf{G}\mathbf{U} = \mathbf{0}$ and $\mathbf{U}^H \mathbf{U} = \mathbf{I}, M' \leq M K$
- The signal received at the k^{th} S-terminal and an I terminal:

$$y_k(t) = \sqrt{p_b} \sum_{i=1}^K \mathbf{g}_k^T \mathbf{v}_i^* s_i(t) + n_k(t)$$
$$y_I(t) = \sqrt{p_I} \mathbf{h}^T \mathbf{U} \mathbf{q}(t) + \sqrt{p_b} \sum_{k=1}^K \mathbf{h}^T \mathbf{v}_k^* s_k(t) + w_I(t)$$

• Further, for a fixed $R_I^{\infty} > 0$, $\mu(\epsilon, R_I^{\infty})$ increases monotonically with decreasing ϵ , i.e.,

 $\partial \mu(\epsilon, R_I^\infty) / \partial \epsilon < 0$

Simulation Parameters

- Antenna spacing in the BS, $d = \lambda/2$, M' = 8.
- I-terminal: $\beta_I = 1$ and $(\phi_I, \theta_I) = (85^\circ, 40^\circ), r_I^{des} = 0.02$ bits/DOF.

Single User:

• $\beta_1 = 1$ • $(\phi_1, \theta_1) = (90^\circ, 45^\circ)$ • $r_1^{des} = 2$ bits/DOF.

Multi User:

- $\beta_k = 1, k = 1, ..., 4$
- $(\phi_1, \theta_1) = (90^\circ, 45^\circ), (\phi_2, \theta_2) = (60^\circ, 30^\circ),$ $(\phi_3, \theta_3) = (22.5^\circ, 60^\circ), (\phi_4, \theta_4) = (15^\circ, 15^\circ)$ • $r_k^{des} = 0.5$ bits/DOF for each k.

• The MR and ZF beamforming vectors:

$$\mathbf{v}_{k}^{MR} \triangleq \sqrt{\frac{\eta_{k}^{MR}}{M\beta_{K}}} \mathbf{g}_{k}, \qquad \mathbf{v}_{k}^{ZF} \triangleq \sqrt{\eta_{k}^{ZF} M\beta_{K}} \left[\mathbf{G}^{\mathrm{T}} \left(\mathbf{G}^{*} \mathbf{G}^{\mathrm{T}} \right)^{-1} \right]_{:,k}$$

The per-DOF information rate to the k^{th} S-terminal and an I-terminal: \bullet

 $r_{I} \triangleq I(y_{I}(t); \mathbf{q}(t)) = \log_{2}[1 + (p_{I} \| \mathbf{h}^{T} \mathbf{U} \|^{2} / M' \sigma_{I}^{2})]$

where σ_I^2 is the variance of overall interference and noise at I-terminal.

Future Work

- Effect of channel estimation error.
- Consideration of NLOS scenario.

This work was supported by EMR funding from the Science and Engineering Research Board (SERB), DST, Government of India, the Swedish Research Council (VR) and ELLIIT