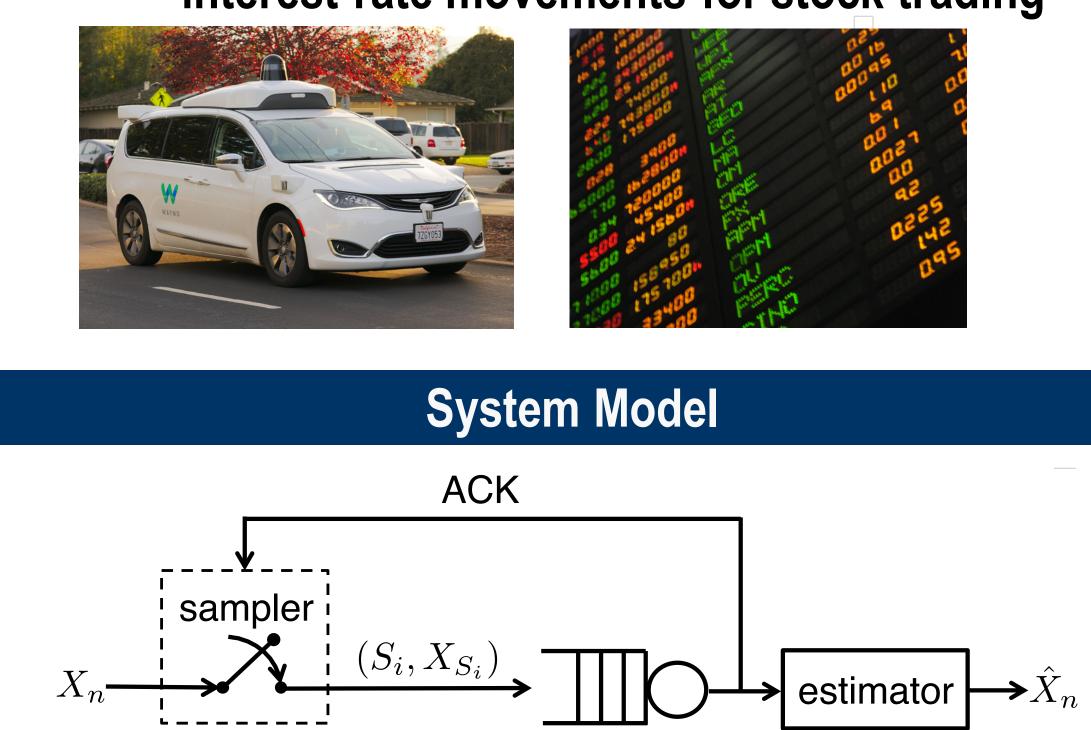
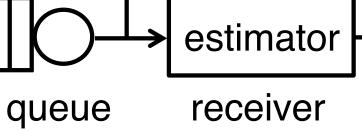


Motivation

 \succ Information is often most valuable when it is fresh. • E.g., car location for autonomous driving, interest-rate movements for stock trading



transmitter



- \succ Samples of discrete-time process (X_n) sent to receive >Channel modeled as a FIFO queue with discrete i service times (Y_i)
- Sample i generated at time S_i and delivered at time D

Definition: Age of Information (Aol)

 $\Delta_n = n - \max\{S_i : D_i \le n\}$

Current time

Generation time of freshness received sample

Aol is a time difference between transmitter and recei >lssues:

- Signals vary over time with different speeds.
- Time difference in Aol is irrelevant of varying spec

Our Contributions

- > Define an information freshness metric based information structure and causality
- > Develop optimal online sampling policy to maxim the freshness of information of Markov sources
- > Optimal sampling policy has a *nice structure*

www.PosterPresentations.co

Information Aging through Queues: **A Mutual Information Perspective** Yin Sun and Benjamin Cyr, Dept. ECE, Auburn University

Mutual Information as an Information freshness Samples received by time n: $\mathbf{W}_n = \{X_{S_i} : D_i \le n\}$ Information freshness metric: $I(X_n; \mathbf{W}_n) = H(X_n) - H(X_n \mathbf{W}_n)$
$\mathbf{W}_{n} = \{X_{S_{i}} : D_{i} \leq n\}$ > Information freshness metric: $I(X_{n}; \mathbf{W}_{n}) = H(X_{n}) - H(X_{n} \mathbf{W}_{n})$
> Information freshness metric: $I(X_n; \mathbf{W}_n) = H(X_n) - H(X_n \mathbf{W}_n)$
$I(X_n; \mathbf{W}_n) = H(X_n) - H(X_n \mathbf{W}_n)$
 Mutual information between current signal variable received samples W_n. ➢ Interpretations:
1. Measure freshness based on information,• Fresh: $I(X_n; \mathbf{W}_n) \approx H(X_n)$ • Obsolete: $I(X_n; \mathbf{W}_n) \approx 0$
 2. Reduction of binary experiments for inferr Shannon code length without W_n≈ H(X Shannon code length with W_n≈ H(X_n Y
3. Easy to compute for Markov sources X_n
Lemma: If X_n is a time-homogenous Markov ch
$I(X_n; \mathbf{W}_n) = I(X_n; X_{n-\Delta_n}) \text{ is a non-neg}$ increasing function of the age $r(\Delta_n)$
 Information "aging" = mutual information re E.g., Gaussian Markov source: X_n = aX
$I(X_n; \mathbf{W}_n) = -\frac{1}{2}\log_2\left(1 - a^{2\Delta_n}\right)$
• Binary Markov source: $X_n = X_{n-1} \oplus V_n$ $V_n \sim \text{Bernoulli}(d)$
$I(X_n; \mathbf{W}_n) = 1 - h\left(\frac{1 - (1 - 2q)^{\Delta_n}}{2}\right)$
Online Sampling Problem
ΓN
$\bar{I}_{opt} = \sup_{\pi \in \Pi} \liminf_{N \to \infty} \frac{1}{N} \mathbb{E} \left[\sum_{n=1}^{N} I(X_n; W_n) \right]$ • Π : set of causal sampling policies • Maximize the freshness of information over

ess metric

value X_n and

not time

ring X_n \mathbf{X}_n) $\mathbf{W}_n)$

hain, then gative, non-

reducing

 $X_{n-1} + Z_n$

(q)

r time mation in

threshold β such that the sampling policy

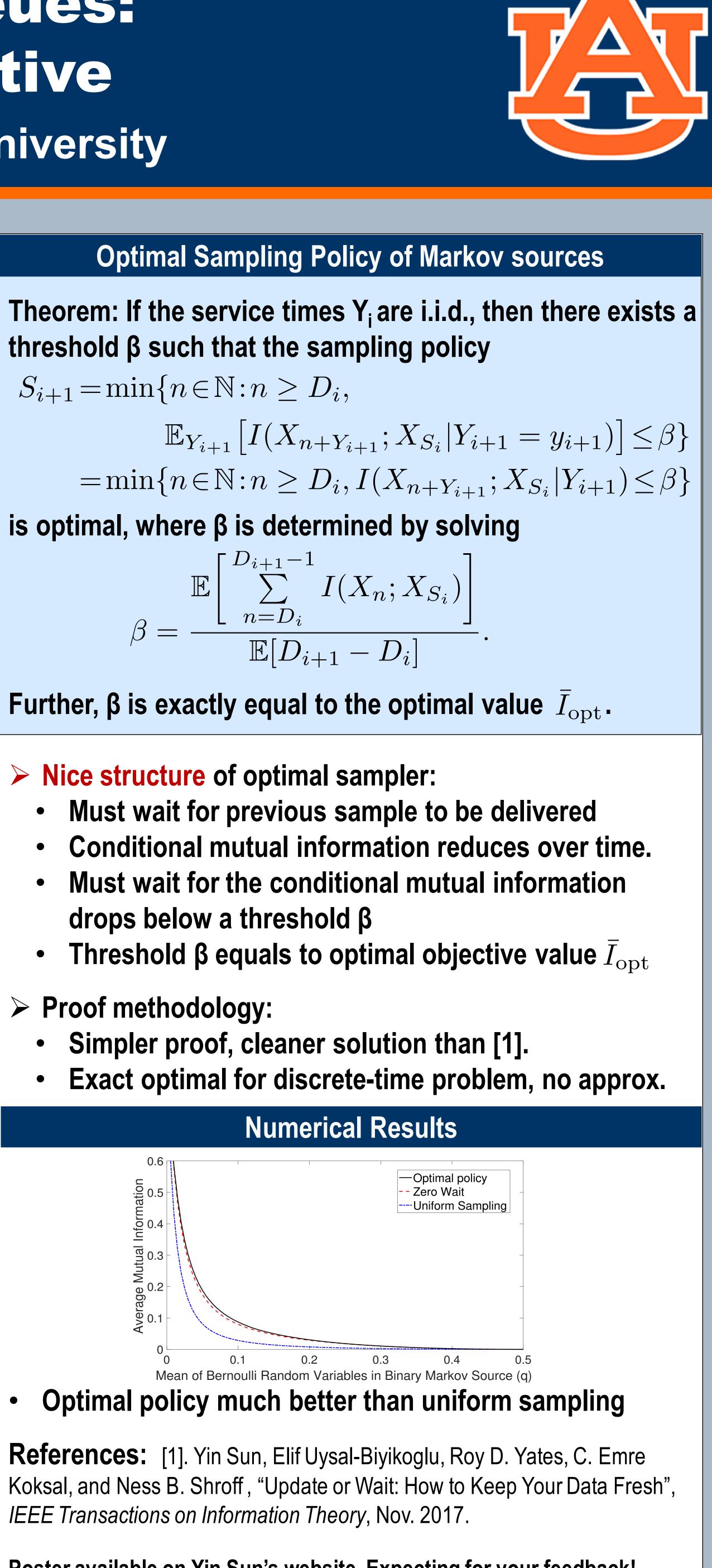
 $S_{i+1} = \min\{n \in \mathbb{N} : n \ge D_i,$

$$\beta = \frac{\mathbb{E}\left[\sum_{\substack{n=D_i}}^{D_{i+1}-1} I(X_n; X_{S_i})\right]}{\mathbb{E}[D_{i+1} - D_i]}$$

> Nice structure of optimal sampler:

- drops below a threshold β

Proof methodology:



IEEE Transactions on Information Theory, Nov. 2017.

Poster available on Yin Sun's website. Expecting for your feedback!