
NESTEROV-BASED ALTERNATING OPTIMIZATION FOR NONNEGATIVE
TENSOR COMPLETION: ALGORITHM AND PARALLEL IMPLEMENTATION

Georgios Lourakis, Athanasios P. Liavas

School of Electrical and Computer Engineering, Technical University of Crete, Greece

Nonnegative Tensor Completion

– Let X ∈ R
I×J×K
+ be an incomplete tensor, and Ω ⊆ {1 . . . I} × {1 . . . J} × {1 . . .K} be the set of

indices of its known entries [1].

– Also, let M ∈ R
I×J×K with

M(i , j , k) =

{

1, if (i , j , k) ∈ Ω,
0, otherwise.

(1)

– We consider the Nonnegative Tensor Completion (NTC) problem

min
A≥0,B≥0,C≥0

fΩ(A,B,C) +
λ

2
‖A‖2

F +
λ

2
‖B‖2

F +
λ

2
‖C‖2

F , (2)

where A = [a1 · · · aR] ∈ R
I×R
+ , B = [b1 · · · bR] ∈ R

J×R
+ , C = [c1 · · · cR] ∈ R

K×R
+ , and

fΩ(A,B,C) =
1

2
‖M⊛ (X − [[A,B,C]])‖2

F , (3)

with

[[A,B,C]] =

R
∑

r=1

ar ◦ br ◦ cr . (4)

Alternating optimization framework

– We can derive matrix-based equivalent expressions of fΩ as

fΩ(A,B,C) =
1

2
‖MA ⊛

(

XA − A(C ⊙ B)T
)

‖2
F =

1

2
‖MB ⊛

(

XB − B(C ⊙ A)T
)

‖2
F

=
1

2
‖MC ⊛

(

XC − C(B ⊙ A)T
)

‖2
F ,

(5)

where MA, MB, MC, and XA, XB, XC are the matrix unfoldings of M and X , respectively.

– Solving (2) for A, B, C is a non-convex problem.
– Alternating optimization (AO):

– Initialize A0,B0,C0, l = 0.

1 Al+1 = argmin
A≥0

fΩ(A) := 1
2

∥

∥MA ⊛
(

XA − A (Cl ⊙ Bl)
T
)
∥

∥

2

F
+ λ

2
‖A‖2

F .

2 Bl+1 = argmin
B≥0

fΩ(B) := 1
2

∥

∥MB ⊛
(

XB − B (Cl ⊙ Al+1)
T
)
∥

∥

2

F
+ λ

2
‖B‖2

F .

3 Cl+1 = argmin
C≥0

fΩ(C) := 1
2

∥

∥MC ⊛
(

XC − C (Bl+1 ⊙ Al+1)
T
)
∥

∥

2

F
+ λ

2
‖C‖2

F .

– Iterate 1, 2, 3 until convergence.

Nonnegative Matrix Completion

– Let X ∈ R
m×n
+ be an incomplete matrix, and Ω ⊆ {1 . . .m} × {1 . . . n} be the set of indices of its

known entries.

– Also, let A ∈ R
m×r
+ , B ∈ R

n×r
+ , and M ∈ R

m×n with

M(i , j) =

{

1, if (i , j) ∈ Ω,
0, otherwise.

(6)

– We consider the Nonnegative Matrix Completion (NMC) problem

min
A≥0

fΩ(A) :=
1

2
‖M ⊛

(

X − ABT
)

‖2
F +

λ

2
‖A‖2

F . (7)

– The gradient and the Hessian of fΩ, at point A, are given by

∇fΩ(A) = −
(

M ⊛ X − M ⊛ ABT
)

B + λA, (8)

and

∇2fΩ(A) =
(

BT ⊗ I
)

diag
2 (vec (M)) (B ⊗ I) + λI. (9)

Nesterov-Type Algorithm for NMC

Algorithm 1: Aopt = N NMC(X,M,B,A∗)
Input: X,M∈ R

m×n
+ , B∈ R

n×r
+ , A∗∈ R

m×r
+ , λ, µ, L

W = −(M ⊛ X)B

q = µ+λ
L+λ

A0 = Y0 = A∗

α0 = 1, l = 0

while (1) do
∇fΩ(Yl) = W + (M ⊛ YlB

T )B + λYl

if (term cond is TRUE) then
break

else
Al+1 =

(

Yl −
1

L+λ
∇fΩ(Yl)

)

+

α2
l+1 = (1 − αl+1)α

2
l + qαl+1

βl+1 = αl (1−αl)

α2
l
+αl+1

Yl+1 = Al+1 + βl+1 (Al+1 − Al)
l = l + 1

return Al .

Nesterov Based AO NTC

Algorithm 2: Nesterov-based AO NTC
Input: X , Ω, A0 > 0, B0 > 0, C0 > 0.

l = 0

while (1) do
Al+1 = N NMC(XA,MA, (Cl ⊙ Bl),Al)

Bl+1 = N NMC(XB,MB, (Cl ⊙ Al+1),Bl)

Cl+1 = N NMC(XC,MC, (Al+1 ⊙ Bl+1),Cl)

if (term cond is TRUE) then break; endif
l = l + 1

return Al , Bl , Cl .

Computation of WA and ZA

WA = (MA ⊛ XA)(C ⊙ B), ZA = (MA ⊛ A(C ⊙ B)T )(C ⊙ B). (10)

– The i-th row of WA, for i = 1, . . . , I, is computed as

WA (i , :) =
(

MA (i , :)⊛ XA (i , :)
)

(C ⊙ B). (11)

– The computation involves the multiplication of a (1 × JK ) row vector and a (JK × R) matrix.

– In order to reduce the computational complexity, we must exploit the sparsity of X .

– Let nnzi be the number of known entries in the i-th horizontal slice of X . Also, let these known

entries have indices
(

i , jq, kq
)

∈ Ω, for q = 1, . . . ,nnzi .

– The computation of the i-th row of WA reduces to

WA (i , :) =

nnzi
∑

q=1

X
(

i , jq, kq
)

C
(

kq, :
)

⊛ B
(

jq, :
)

. (12)

Efficient computation of ZA can be achieved following similar arguments.

Distributed Memory Implementation

X
1

A
X

1

A
X

1

A

X
1

B
X

1

C

Figure: Tensor partition.

– We assume p processing elements [2].

– We partition the matricization XA into p block rows as XA =

[

(

X1
A

)T
· · ·

(

X
p
A

)T
]T

, with

Xn
A ∈ R

I
p×JK

. We partition similarly XB and XC.

– The n-th block row of XA, XB, XC have been allocated to the n-th processing element, for n = 1, . . . ,p .

– We partition Al into p block rows as Al =

[

(

A1
l

)T
· · ·

(

A
p
l

)T
]T

, with An
l ∈ R

I
p×R

, for n = 1, . . . ,p .

– The n-th processor knows the whole Al , but updates the n-th block row of Al , An
l , for n = 1, . . . ,p .

Factor Update Implementation

The update of Al is achieved via the updates of An
l , for n = 1, . . . ,p:

– The n-th processing element uses its local data Xn
A , as well as the whole matrices Bl and Cl , and

computes the n-th block row of matrix Al+1, An
l+1, via the Nesterov Matrix Completion algorithm.

– Each processing element broadcasts its output to all other processing elements; this operation can

be implemented via an Allgather operation.

At this point, all processors know Al+1 and are ready for the update of Bl (and, then, of Cl).

Numerical Experiments

– Results obtained from a Message Passing Interface (MPI) implementation of the AO NTC.

– The program is executed on a DELL PowerEdge R820 system with SandyBridge - Intel(R) Xeon(R)

CPU E5 − 4650v2 (in total, 16 nodes with 40 cores each at 2.4 Gz) and 512 GB RAM per node.

– The matrix operations are implemented using routines of the C++ library Eigen [3].

– The performance metric we compute is the speedup attained using p processors.

Real Data

– The MovieLens 10M dataset [4], which contains time-stamped ratings of movies.

– Binning the time into seven-day-wide bins, results in a tensor of size 71567 × 65133 × 171.

– The number of samples is 8M (99.99% sparsity).

– We first perform a random permutation on our data to resolve load imbalance issues.
– We measure the completion accuracy by measuring the mean squared error of 2M known ratings

with our predictions.The mean squared error we achieved is 0.0033

(For the n-th known rating,with indices (in, jn, kn), we compute our prediction after rounding the quantity
∑R

r=1 A(in, :)⊛ B(jn, :)⊛ C(kn, :) to the closest integer.)

Speed Up

0 50 100 150
0

50

100

150

200

S
pe

ed
up

Number of Cores

 

 
Linear Speedup
Movielens 10M

Figure: Speedup achieved for the MovieLens 10M dataset of size 71567 × 65133 × 171 with p cores, for p = 1,5,20,171.

Synthetic Data

– Synthetic data of the same size and sparsity level.

– True latent factors with i.i.d elements, uniformly distributed in [0,1].

Speed Up

0 50 100 150
0

50

100

150

200

S
pe

ed
up

Number of Cores

 

 
Linear Speedup
Synthetic Data

Figure: Speedup achieved for a 71567 × 65133 × 171 tensor with p cores, for p = 1,5, 20,171.

References

1. L. Karlsson, D. Kressner and A. Uschmajew, “Parallel algorithms for tensor completion in the CP

format,” Parallel Computing, 2015.

2. K. Shin U. Kang, “Distributed Methods for High-dimensional and Large-scale Tensor Factorization,”

IEEE International Conference on Data Mining, pp. 989–994, 2014.

3. G. Guennebaud and B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010.

4. F. Maxwell Harper and J. A. Konstan, “The MovieLens Datasets: History and Context,” ACM

Transactions on Interactive Intelligent Systems (TiiS), vol. 5, no. 4, pp. 1–19, June, 2015.

SPAWC 2018 - International Workshop on Signal Processing Advances in Wireless Communications June 25-28, 2018, Kalamata, Greece


