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Nonnegative Tensor Completion

Distributed Memory Implementation

~ Let X e R*Y*K be an incomplete tensor, and Q C {1 ...
Indices of its known entries [1].

— Also, let M ¢ R/*YxK with

Iy < {1...J} x{1...
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— We consider the Nonnegative Tensor Completion (NTC) problem
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Alternating optimization framework

— We can derive matrix-based equivalent expressions of f, as
1 1
f(A.B.C) = [IMa® (Xa—A(C©B)) |2 = 5 IMg ® (Xs —B(Co A)T) |2
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where Mp, Mg, M¢, and Xp, Xg, X¢ are the matrix unfoldings of M and X', respectively.

— Solving (2) for A, B, C is a non-convex problem.
— Alternating optimization (AO):
— Initialize Ao, Bo, Co, | =

A(C,oB)T)|Z+4 A%

% MA@(XA—

1 | Mg ® (Xa — B(C® Ap)T)[[% + 3 B2
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1 A1 = argmin fo(A) =
A>0

2 Bj.1 = argmin fp(B) =
B>0

38 C/, 1 = argmin fp(C) :=
C>0

— lterate 1, 2, 3 until convergence.
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Nonnegative Matrix Completion

m} x {1...

— Let X € R"*" be an incomplete matrix, and Q C {1...
known entries.

— Also, let A e R, B € R7*", and M € R™*" with

. 1,0 )) € Q,
MG, J) = {O, otherwise.

— We consider the Nonnegative Matrix Completion (NMC) problem

1 T2 o A
min fo(A) i~ HM@)(X AB )HF |A|Z.

— The gradient and the Hessian of fy, at point A, are given by
Viy(A) = — (M@X—M@ABT) B+ )\A,

and
V2fo(A) = (BT ® |) diag?(vec (M) (B® 1) + Al

Nesterov-Type Algorithm for NMC

K} be the set of

n} be the set of indices of its

Figure: Tensor partition.

— We assume p processing elements [2].
-

T T .
— We partition the matricization X, into p block rows as X = [ (xk) . (xﬁ) ] , with

. We partition similarly Xg and Xc.

— The n-th block row of Xp, Xg, X¢ have been allocated to the n-th processing element, for n=1,...p.
- T /
 with AP € Rp™ "

T T
— We partition A, into p block rows as A, = [ (A}) . (A//O) ,for n=1,....p.

— The n-th processor knows the whole A/, but updates the n-th block row of A, Al for n=1,... p.

Factor Update Implementation

(5) = The update of A, is achieved via the updates of A, forn=1,..., p:
— The n-th processing element uses its local data X7 , as well as the whole matrices B, and C,, and

computes the n-th block row of matrix A/ 1, A7+1’ via the Nesterov Matrix Completion algorithm.

— Each processing element broadcasts its output to all other processing elements; this operation can
be implemented via an A1 1gather operation.

At this point, all processors know A/, 1 and are ready for the update of B, (and, then, of C).

Numerical Experiments

— Results obtained from a Message Passing Interface (MPI) implementation of the AO NTC.

— The program is executed on a DELL PowerEdge R820 system with SandyBridge - Intel(R) Xeon(R)

CPU E5 — 4650v2 (in total, 16 nodes with 40 cores each at 2.4 Gz) and 512 GB RAM per node.
— The matrix operations are implemented using routines of the C++ library Eigen [3].
— The performance metric we compute is the speedup attained using p processors.

Real Data

— The MovieLens 10M dataset [4], which contains time-stamped ratings of movies.
— Binning the time into seven-day-wide bins, results in a tensor of size 71567 x 65133 x 171.
— The number of samples is 8M (99.99% sparsity).

— We first perform a random permutation on our data to resolve load imbalance issues.

— We measure the completion accuracy by measuring the mean squared error of 2M known ratings
with our predictions.The mean squared error we achieved is 0.0033

(For the n-th known rating,with indices (in, o, Kn), we compute our prediction after rounding the quantity
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Input: X Mc R™", Bc R™", A,c RT*", \, u, L
W= _(M&X)B

_ pAA
q= L+

A=Yy =A.

o = 1, [=0

while (1) do

VfQ(Y/) =W + (M €3 Y/BT)B + Y,
If (term_cond is TRUE) then
break

= (Y/— = V(Y1)
O‘/2+1 =(1- C“/+1)C‘5/ + 4Q1
_ o(1-o)
Bl = ajz +a/+’1
Y1 =A1+ 81 (A — A))
I =1+1

return A,.
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Figure: Speedup achieved for the MovieLens 10M dataset of size 71567 x 65133 x 171 with p cores, for p =1,5,20,171.

Synthetic Data

— Synthetic data of the same size and sparsity level.

— True latent factors with i.i.d elements, uniformly distributed in [0, 1].

Nesterov Based AO NTC Speed Up

Algorithm 2: Nesterov-based AO NTC

Input: x,Q, Ay >0,B, >0,Cy > 0.

|=0

while (1) do
A= N_NMC(XA, Ma, (C/ O B/), A)
B_1= N_NMC(XB, Mg, (C/ ® A ), B/
C/ 1 = NNMC(Xc,Mc, (A1 ©B1),C))

if (term_cond is TRUE) then break; endif
=1+
return A, B, C,.

Linear Speedup
—+— Synthetic Data
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Computation of Wy and Zp

Wpa = (Mp®Xa)(COB), Za=(May®A(C®B))(CoB).

— The i-th row of Wy, fori=1,...,/, is computed as

Wa (i,:) = (Ma (i.:) ® Xa (/") ) (C © B).
— The computation involves the multiplication of a (1 x JK) row vector and a (JK x R) matrix.
— In order to reduce the computational complexity, we must exploit the sparsity of X .
— Let nnz; be the number of known entries in the i-th horizontal slice of X'. Also, let these known
entries have indices (i, jg, kq) € Q,forg=1,..., nnz;.
— The computation of the /-th row of W reduces to
nnz;
> X (i,jq. kq) C (kg,:) ® B (jg.1) -
q=1

WA(iv ):

Efficient computation of Z can be achieved following similar arguments.
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Figure: Speedup achieved for a 71567 x 65133 x 171 tensor with p cores, for p=1,5,20,171.
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