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Abstract

This work formulates a multitask optimization prob-
lem where agents have individual costs to minimize,
subject to a smoothness condition over the graph. A
diffusion strategy that responds to streaming data and
employs stochastic approximations in place of actual
oradient vectors is derived and studied.

Distributed Inference under
Smoothness

are

- Connected graph G = (N, A) with N a set of N
nodes, and A a symmetric weighted adjacency ma-
trix with |Alzy = are > 0 if there is an edge con-
necting k and £ and 0 otherwise

« Strongly convex risk Ji(wy) = E Qr(wy; @) at node

k with w? the minimizer

« Prior belief: the signal w° = col{w{, ..., w%} is
smooth w.r.t. the underlying weighted graph

A measure for the smoothness of w is:
1 N
S(W) — WT,CW — 5 Sj S: akgHwk — ’LUgH2
k=1 /eN;
where £ = L® I, L = diag{ A1 5} — A is the graph
Laplacian, and N}, is the neighborhood of k.

Objective
Devise a distributed strategy that solves:
N
w, = argmin > Ji(wg) + T L (1)
W 2
where nn > 0 is a regularization strength. Agent
k is interested in estimating the k-th sub-vector of

We are interested in a stochastic solution where
the distribution of a is unknown, i.e., Ji(wy) and
Vo Ji(wg) are unknown. A common construction is
to employ the following approximation at iteration :

/\

Vo, Je(wi) = Vi, Qr(wy; ;)

where ax; represents the data observed at iteration «.

Adaptive distributed strategy

/"pk,i — wk,i—l o Mvwkjk(wk,i—1>

(2)

Wi = ¢k,z‘ —un . ak€(¢k,i — ¢£,i)

fENk
where p > 0 is a small step-size.

Theoretical Motivation

Consider MSE networks where each agent is subjected
to streaming data {d(%), wy;}:

dk(l) — ukjiwz T Uk(Z)

with w{ an unknown vector and v (2) a measurement
noise. An MSE cost is associated with node k:

Ji(wy) = -

— — |1,
The processes {di(7), ui;, vi(7)} are assumed to be

dk(Z) — uk,@wk\z

2

zero-mean jointly WSS satisfying: 1) ﬂu,;ug’j =
Ry 10k00;; where Ry, > 0; ii) Evg(i)ve(y) =

ag’k&{)g&-,j; iii) the regression and noise processes
{wy ;,vi(2)} are independent of each other.

Maximum a posteriori estimator

If the network parameter vector is an intrinsic

Gaussian Markov Random field w ~ N(0, £), i.e.,
f(W) _ (QW)—M(N—l)/Q (‘[,‘*)1/2 6_%WT£W

and if the noise is Gaussian v(2) ~ N(0,0, ;)
independent over space and time and identically
distributed, then problem (1) is a MAP estimator

for w conditioned on {d(7), ws ;}-

Stochastic Performance Analysis

« The risk Ji(wy) is assumed to be twice differentiable
and strongly convex such that:

0 < )\k,min[M < V?Ukt]k(wk) < )\k,maX[M
« It is assumed that the gradient noise defined as:
Sii(wy) = Vi, Jp(wg) — Vi, Ji(wy)

satishies:

sk i(wg)|Fi1) =0

8[| sk.i(wi) [P Fi1] < BHllwill® + 02,

for some 37 > 0, Oik > 0, and where F;_; de-

notes the filtration generated by the random pro-
cesses {wy i} forall{=1,... Nand j <i—1

Stochastic performance

Strategy (2) induces a contraction mapping when:

(2
and 0 < 4 < min }
1SkSN \)\k,max

2
0 < <
> MT) > A L)’

and leads to small estimation errors:

1
MSD = lim sup —

1— 00

Simulation Results

Let Y1

+1 denote a class random variable and hj denote the corresponding feature vector. During the

training phase, k receives {~.(%), by} with hy; = v,(¢) - r - col{cos(fx),sin(6x)} + vy, Vi, is drawn from

N(0,0, 1) and (i) is Bernoulli distributed with p(y,(i) =

E—1 T
N—1 6°

1) =0.5. Wesetfr:ﬂandﬁk:%

We are interested in finding a decision rule, parameterized by w¢, such that 4.(i) = sign(h,—{r’iwg) and

o A :
wk — arg Hz}}kn

< In (1 + e_”(i)h‘;w’“) + p

wkHQ.

We consider a network of 50 nodes where k is connected to k — 1 and k+ 1 if k£ =4 {1,50}, node 1 is connected
to 2, and node 50 is connected to 49. The weight over a link is set to 1/3. We set u = 1079 and p = 0.025.
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Figure 1: (Left) Noise profile. (Middle) Classification accuracy. (Right) One realization (after convergence) of the classifier. Blue

and red circles correspond to feature vectors of 100 test samples at node k.

Remarks

« Long versions of this work have been submitted and
can be found on arXiv |2, 3|. The results in Part II
reveal explicitly the influence of the network topol-
ogy, the data characteristics, and the regularization
strength on the network performance and provide
insights into the design of multitask strategies.

« A connection with graph signal processing is pro-
vided in the paper and in the longer version [3].
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