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Abstract

This work formulates a multitask optimization prob-
lem where agents have individual costs to minimize,
subject to a smoothness condition over the graph. A
diffusion strategy that responds to streaming data and
employs stochastic approximations in place of actual
gradient vectors is derived and studied.

Distributed Inference under
Smoothness

•Connected graph G = (N , A) with N a set of N
nodes, and A a symmetric weighted adjacency ma-
trix with [A]k` = ak` > 0 if there is an edge con-
necting k and ` and 0 otherwise

•Strongly convex risk Jk(wk) = EQk(wk;x) at node
k with wo

k the minimizer
•Prior belief: the signal Wo = col{wo

1, . . . , w
o
N} is

smooth w.r.t. the underlying weighted graph

A measure for the smoothness of W is:

S(W) = W>LW = 1
2

N∑
k=1

∑
`∈Nk

ak`‖wk − w`‖2

where L = L⊗IM , L = diag{A1N}−A is the graph
Laplacian, and Nk is the neighborhood of k.

Objective

Devise a distributed strategy that solves:

Wo
η = arg min

W

N∑
k=1

Jk(wk) + η

2
W>LW (1)

where η ≥ 0 is a regularization strength. Agent
k is interested in estimating the k-th sub-vector of
Wo
η = col{wo

1,η, . . . , w
o
N,η}.

We are interested in a stochastic solution where
the distribution of x is unknown, i.e., Jk(wk) and
∇wkJk(wk) are unknown. A common construction is
to employ the following approximation at iteration i:

∇̂wkJk(wk) = ∇wkQk(wk;xi)
where xi represents the data observed at iteration i.

Adaptive distributed strategy

ψk,i = wk,i−1 − µ∇̂wkJk(wk,i−1)
wk,i = ψk,i − µη

∑
`∈Nk

ak`(ψk,i −ψ`,i) (2)

where µ > 0 is a small step-size.

Theoretical Motivation

Consider MSE networks where each agent is subjected
to streaming data {dk(i),uk,i}:

dk(i) = uk,iwo
k + vk(i)

with wo
k an unknown vector and vk(i) a measurement

noise. An MSE cost is associated with node k:
Jk(wk) = 1

2
E|dk(i)− uk,iwk|2

The processes {dk(i),uk,i,vk(i)} are assumed to be
zero-mean jointly WSS satisfying: i) Eu>k,iu`,j =
Ru,kδk,`δi,j where Ru,k > 0; ii) Evk(i)v`(j) =
σ2
v,kδk,`δi,j; iii) the regression and noise processes
{u`,j,vk(i)} are independent of each other.

Maximum a posteriori estimator

If the network parameter vector is an intrinsic
Gaussian Markov Random field W ∼ N (0,L), i.e.,

f (W) = (2π)−M(N−1)/2 (|L|∗)1/2 e−
1
2W>LW

and if the noise is Gaussian vk(i) ∼ N (0, σ2
v,k)

independent over space and time and identically
distributed, then problem (1) is a MAP estimator
for W conditioned on {dk(i),uk,i}.

Stochastic Performance Analysis

•The risk Jk(wk) is assumed to be twice differentiable
and strongly convex such that:

0 < λk,minIM ≤ ∇2
wk
Jk(wk) ≤ λk,maxIM

• It is assumed that the gradient noise defined as:
sk,i(wk) = ∇wkJk(wk)− ∇̂wkJk(wk)

satisfies:
E[sk,i(wk)|F i−1] = 0

E[‖sk,i(wk)‖2|F i−1] ≤ β2
k‖wk‖2 + σ2

s,k

for some β2
k ≥ 0, σ2

s,k ≥ 0, and where F i−1 de-
notes the filtration generated by the random pro-
cesses {w`,j} for all ` = 1, . . . , N and j ≤ i− 1

Stochastic performance

Strategy (2) induces a contraction mapping when:

0 ≤ µη ≤ 2
λmax(L)

, and 0 < µ < min
1≤k≤N

 2
λk,max


and leads to small estimation errors:

MSD , lim sup
i→∞

1
N
E‖Wo

η −Wi‖2 = O(µ)

Simulation Results

Let γk = ±1 denote a class random variable and hk denote the corresponding feature vector. During the
training phase, k receives {γk(i),hk,i} with hk,i = γk(i) · r · col{cos(θk), sin(θk)} + vk,i, vk,i is drawn from
N (0, σ2

v,kI) and γk(i) is Bernoulli distributed with p(γk(i) = +1) = 0.5. We set r =
√

2 and θk = π
6 + k−1

N−1 ·
7π
6 .

We are interested in finding a decision rule, parameterized by wo
k, such that γ̂k(i) = sign(h>k,iwo

k) and

wo
k , arg min

wk
E ln

(
1 + e−γk(i)h

>
k,iwk

)
+ ρ‖wk‖2.

We consider a network of 50 nodes where k is connected to k− 1 and k+ 1 if k 6= {1, 50}, node 1 is connected
to 2, and node 50 is connected to 49. The weight over a link is set to 1/3. We set µ = 10−3 and ρ = 0.025.
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Figure 1: (Left) Noise profile. (Middle) Classification accuracy. (Right) One realization (after convergence) of the classifier. Blue
and red circles correspond to feature vectors of 100 test samples at node k.

Remarks

•Long versions of this work have been submitted and
can be found on arXiv [2, 3]. The results in Part II
reveal explicitly the influence of the network topol-
ogy, the data characteristics, and the regularization
strength on the network performance and provide
insights into the design of multitask strategies.

•A connection with graph signal processing is pro-
vided in the paper and in the longer version [3].
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