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1 Introduction

We investigate the impact of the network configuration
on the level of favorable propagation for a cell-free (CF)
Massive MIMO network. Leveraging users’ spatial diver-
sity, we formulate a user grouping and scheduling opti-
mization problem. The formulated optimization problem
iIs NP-hard. We design an efficient randomization algo-
rithm based on semidefinite relaxation method to effi-
ciently find a sub-optimal solution.

2 System Model

Figure 2: Cell-free Massive MIMO

e M single antenna APs serve simultaneously K single
omni-directional antenna users (K << M )

e The m-th AP performs minimum mean-square error
(MMSE) channel estimation
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where,

—gme. Channel coefficient between the k-th user and
the m-th AP.

—qp. training sequence of the kth user.

— Bk large scale fading coefficients.

— p,. transmit power during training phase.

—n,,,. AWGN vector at the m-th AP.

—7: uplink training duration with 7 < T, (coherence
interval).

3. Which users can be active

simultaneously?

Favorable propagation: mutual orthogonality between
users' vector wireless channel

i _ )0 if &k # j,
91970 |1gull> # 0 otherwise,

Asymptotically,
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where
® hi ~ CN(0,1): small-scale fading coefficients.

Alternative: consider the complementary CDF of the in-

ner product of two given users’ channel
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Objective: making B, V6 > 0 very small to achieve
NEAR ORTHOGONALITY between users' channel vectors, and
therefore FAVORABLE PROPAGATION .

Invoking Chebychev’'s inequality, P, can be lower-
bounded by
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Challenge: design a scheme to minimize P;.

4 Graphical Modeling and
proposed solution

4.1 Scheduling design

1.Step 1 : Construct a spatial correlation graph GV, &)
that captures the level of favorable propagation for a
set of users which are active simultaneously.

oV : set of vertices stands for the users in the coverage
area.

e Each edge ¢, ; € £ is associated with a weight w;; =

M
> BukbBmj, directly related to the spatial correlation
m=1

between two users' channel.

2.Step 2 : Group active users such that the spatial cor-
relation between their channels is minimized.

4.2 Problem formulation and algorithm design

Algorithm 1 A randomized algorithm to solve problem (1)

input an optimal solution Y7, Ve to problem (2).

Generate & ~ N(0,Y7%), Ve;

Set & = &/ tr (diag (&) , Ve,

Generate L vector samples yé, [ =1,---, L feasible for problem
(1) such that each entry ;Z]]lfjc, k=1---,C is drawn from the

following distribution:

;[ 1 with probability (1 + E;{)c) /2
Ike =) =1 with probability (1 — ék,c)/Q

5. Compute [* = arg maazl:L...,Li 25:1 (C — (%)TW%)S

6: output the solution y. = yfj, Ve.
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Define the following variable

1 if user k is allocated to the c-th group
Lkc = -
0 otherwise

The user grouping problem is formulated as
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where,

e C: total number of groups.

e . Maximum number of groups to which a user can
belong at the same time.

Lemma 1: Computational tractability

Problem (1) is NP-hard in general.

GOAL: Design a low-complexity algorithm to sub-
optimally solve problem (1).

Define following variables and changes of variables
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where,

e 1. entry one column vector.

Combining SEMIDEFINITE RELAXATION method with the
SCHUR COMPLEMENT, problem (1) can be relaxed as
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Problem (2) is a standard convex optimization problem
and can be efficiently solved using CVX.

We develop a randomized procedure, in the vein of Gaus-
sian randomization, to convert the optimal solution of (2)
into a feasible solution to problem (1).
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where,
e B: bandwidth of the system.
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e ps. downlink transmit power.

: variance of g,..

e '(c): set of users that belong to group c.

Problem (3): a convex linear optimization problem. Op-
timal solution: interior-point method.

5 Numerical Results
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Figure 3: Comparison of CDF's of normalized large-scale fading corre-
lation for K =20, aa =6,C =4
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Figure 4. Average Downlink Throughput versus the number of APs
and different K values (7 = K)
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