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1 Introduction
We investigate the impact of the network configuration
on the level of favorable propagation for a cell-free (CF)
Massive MIMO network. Leveraging users’ spatial diver-
sity, we formulate a user grouping and scheduling opti-
mization problem. The formulated optimization problem
is NP-hard. We design an efficient randomization algo-
rithm based on semidefinite relaxation method to effi-
ciently find a sub-optimal solution.

2 System Model

Figure 2: Cell-free Massive MIMO

•M single antenna APs serve simultaneously K single
omni-directional antenna users (K << M )

•The m-th AP performs minimum mean-square error
(MMSE) channel estimation
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where,

– gmk: channel coefficient between the k-th user and
the m-th AP.

– qk training sequence of the kth user.

– βmk: large scale fading coefficients.

– ρp: transmit power during training phase.

–nm,p: AWGN vector at the m-th AP.
– τ : uplink training duration with τ < Tc (coherence

interval).

3 Which users can be active
simultaneously?

Favorable propagation: mutual orthogonality between
users’ vector wireless channel

g†kgj =

{
0 if k 6= j,
‖gk‖2 6= 0 otherwise,

Asymptotically,

g†kgj
M
−→ 0, M −→∞ for k 6= j,

which is equivalent to

M∑
m=1

√
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√
βm,jh

∗
m,khm,j

M
−→ 0 for k 6= j,

where

• hmk ∼ CN (0, 1): small-scale fading coefficients.

Alternative: consider the complementary CDF of the in-
ner product of two given users’ channel

Pθ = Pr

{
g†kgj
M
≥ θ

}
Objective: making Pθ, ∀θ ≥ 0 very small to achieve
near orthogonality between users’ channel vectors, and
therefore favorable propagation .

Invoking Chebychev’s inequality, Pθ can be lower-
bounded by

Pθ = Pr

{
g†kgj
M
≥ θ

}
≤ 1

1 + M2θ2

M∑
m=1

βm,kβm,j

,

Challenge: design a scheme to minimize Pθ.

4 Graphical Modeling and
proposed solution

4.1 Scheduling design

1. Step 1 : Construct a spatial correlation graph G(V , E)

that captures the level of favorable propagation for a
set of users which are active simultaneously.

• V : set of vertices stands for the users in the coverage
area.

•Each edge ek,j ∈ E is associated with a weight ωk,j ,
M∑
m=1

βmkβmj, directly related to the spatial correlation

between two users’ channel.

2. Step 2 : Group active users such that the spatial cor-
relation between their channels is minimized.

4.2 Problem formulation and algorithm design

Define the following variable

xk,c =

{
1 if user k is allocated to the c-th group
0 otherwise

The user grouping problem is formulated as

max
xk,c∈{0,1},∀c,∀k

C∑
c=1

∑
k∈V

∑
j∈V ,j 6=k

wk,j (1− xk,c)xj,c

s.t.

C∑
c=1

xk,c ≤ α, ∀k ∈ V ,∑
k∈V

xk,c ≤ τ, ∀c = 1, . . . , C,

(1)

where,

•C: total number of groups.

• α: maximum number of groups to which a user can
belong at the same time.

Lemma 1: Computational tractability

Problem (1) is NP-hard in general.

GOAL: Design a low-complexity algorithm to sub-
optimally solve problem (1).

Define following variables and changes of variables

xc , (x1,c · · · , xK,c)> , yc , 2xc − 1K

W ,


0 w2,1 · · · wK,1
w1,2 0 · · · wK,2

... ... . . . ...
w1,K w2,K · · · 0


where,

• 1K: entry one column vector.

Combining semidefinite relaxation method with the
Schur complement, problem (1) can be relaxed as

max
Yc�0,∀c

1

4

C∑
c=1

(ς − tr (WYc))

s.t.

C∑
c=1

yc ≤ ᾱ

tr (diag (yc)) ≤ τ̄ , ∀c
diag (Yc) = 1K(

Yc yc
y>c 1

)
� 0, ∀c

(2)

Problem (2) is a standard convex optimization problem
and can be efficiently solved using CVX.

We develop a randomized procedure, in the vein of Gaus-
sian randomization, to convert the optimal solution of (2)

into a feasible solution to problem (1).

Algorithm 1 A randomized algorithm to solve problem (1)
1: input an optimal solution Y?c, ∀c to problem (2).
2: Generate ξc ∼ N (0,Y?c), ∀c;
3: Set

fl
ξc = ξc/ tr (diag (ξc)) , ∀c;

4: Generate L vector samples ỹlc, l = 1, · · · , L feasible for problem
(1) such that each entry ›ylk,c, k = 1, · · · , C is drawn from the

following distribution:

›ylk,c =

{
1 with probability (1 + ξ̃k,c)/2
−1 with probability (1− ξ̃k,c)/2

5: Compute l? = argmaxl=1,··· ,L
1
4

∑C
c=1

(
ς −

(›ylc)>W›ylc);

6: output the solution ŷc = ỹl
?

c , ∀c.

4.3 Bandwidth allocation problem

The bandwidth allocation problem is formulated as

max
0≤γc≤1,∀c

∑
c,k∈Γ(c)

γc
fi
Rk,c

s.t. Rk ≤
C∑
c=1

γc
fi
Rk,c,∀k

C∑
c=1

γc ≤ 1

(3)

The rate of the kth user in group c is given by

R̃k,c = BTc − |Γ(c)|
Tc

log2

1 +

ρd(
M∑
m=1

νmk)
2

ρd
M∑
m=1

τ∑
k′∈Γ(c)
k′ 6=k

νmk′βmk + 1


where,

• B: bandwidth of the system.

• νmk ,
ρpβ

2
mk

1+ρpβmk
: variance of ĝmk.

• ρd: downlink transmit power.

• Γ(c): set of users that belong to group c.

Problem (3): a convex linear optimization problem. Op-
timal solution: interior-point method.

5 Numerical Results
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Figure 3: Comparison of CDFs of normalized large-scale fading corre-
lation for K = 20, α = 6, C = 4
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Figure 4: Average Downlink Throughput versus the number of APs
and different K values (τ = K)
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