Enhancing Favorable Propagation in Cell-Free Massive MIMO Through Spatial User Grouping

Salah Eddine Hajri ${ }^{\dagger}$, Juwendo Denis ${ }^{\dagger}$, Mohamad Assaad ${ }^{\dagger}$
 \dagger TCL Chair on 5G, Laboratoire des Signaux et Systemes (L2S, CNRS), CentraleSupelec Gif-sur-Yvette, France
 1 Introduction
 We investigate the impact of the network configuration
 4 Graphical Modeling and proposed solution

on the level of favorable propagation for a cell-free (CF) Massive MIMO network. Leveraging users' spatial diversity, we formulate a user grouping and scheduling optimization problem. The formulated optimization problem is NP-hard. We design an efficient randomization algorithm based on semidefinite relaxation method to efficiently find a sub-optimal solution.

2 System Model

Figure 2: Cell-free Massive MIMO

- M single antenna APs serve simultaneously K single omni-directional antenna users ($K \ll M$)
- The m-th AP performs minimum mean-square error (MMSE) channel estimation

$$
\hat{g}_{m k}=\frac{\sqrt{\rho_{p}} \beta_{m k}}{\rho_{p} \beta_{m k}+1}\left(\sqrt{\rho_{p}} g_{m k}+\boldsymbol{n}_{m, p} \mathbf{q}_{k}^{\dagger}\right), k=1, \cdots, \tau
$$

where,
$-g_{m k}$: channel coefficient between the k-th user and the m-th AP.
$-\mathbf{q}_{k}$ training sequence of the k th user.
$-\beta_{m k}$: large scale fading coefficients.
$-\rho_{p}$: transmit power during training phase.
$-\boldsymbol{n}_{m, p}$: AWGN vector at the m-th AP.
$-\tau$: uplink training duration with $\tau<T_{c}$ (coherence interval).

3 Which users can be active simultaneously?

Favorable propagation: mutual orthogonality between users' vector wireless channel

$$
\boldsymbol{g}_{k}^{\dagger} \boldsymbol{g}_{j}=\left\{\begin{array}{lc}
0 & \text { if } k \neq j, \\
\left\|\boldsymbol{g}_{k}\right\|^{2} \neq 0 & \text { otherwise },
\end{array}\right.
$$

Asymptotically,

$$
\frac{\boldsymbol{g}_{k}^{\dagger} \boldsymbol{g}_{j}}{M} \longrightarrow 0, M \longrightarrow \infty \quad \text { for } \quad k \neq j,
$$

which is equivalent to

$$
\frac{\sum_{m=1}^{M} \sqrt{\beta_{m, k}} \sqrt{\beta_{m, j}} h_{m, k}^{*} h_{m, j}}{M} \longrightarrow 0 \quad \text { for } \quad k \neq j,
$$

where

- $h_{m k} \sim \mathcal{C N}(0,1)$: small-scale fading coefficients.

Alternative: consider the complementary CDF of the inner product of two given users' channel

$$
P_{\theta}=\operatorname{Pr}\left\{\frac{\boldsymbol{g}_{k}^{\dagger} \boldsymbol{g}_{j}}{M} \geq \theta\right\}
$$

Objective: making $P_{\theta}, \forall \theta \geq 0$ very small to achieve NEAR ORTHOGONALITY between users' channel vectors, and therefore favorable propagation.

Invoking Chebychev's inequality, P_{θ} can be lowerbounded by

$$
P_{\theta}=\operatorname{Pr}\left\{\frac{\boldsymbol{g}_{k}^{\dagger} \boldsymbol{g}_{\boldsymbol{j}}}{M} \geq \theta\right\} \leq \frac{1}{1+\frac{M^{2} \theta^{2}}{\sum_{m=1}^{M} \beta_{m, k} \beta_{m, j}}},
$$

Challenge: design a scheme to minimize P_{θ}.

4.1 Scheduling design

1. Step 1 : Construct a spatial correlation graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ that captures the level of favorable propagation for a set of users which are active simultaneously.

- \mathcal{V} : set of vertices stands for the users in the coverage area.
- Each edge $e_{k, j} \in \mathcal{E}$ is associated with a weight $\omega_{k, j} \triangleq$ $\sum_{m=1}^{M} \beta_{m k} \beta_{m j}$, directly related to the spatial correlation between two users' channel.

2. Step 2 : Group active users such that the spatial correlation between their channels is minimized.

4.2 Problem formulation and algorithm design

Define the following variable
$x_{k, c}=\left\{\begin{array}{l}1 \text { if user } k \text { is allocated to the } c \text {-th group } \\ 0 \text { otherwise }\end{array}\right.$
The user grouping problem is formulated as

$$
\begin{aligned}
\max _{c \in\{ } 0 & \sum_{c=1}^{C} \sum_{k \in \mathcal{V}} \sum_{j \in \mathcal{V}, j \neq k} w_{k, j}\left(1-x_{k, c}\right) x_{j, c} \\
\text { s.t. } & \sum_{c=1}^{C} x_{k, c} \leq \alpha, \forall k \in \mathcal{V}, \\
& \sum_{k \in \mathcal{V}} x_{k, c} \leq \tau, \forall c=1, \ldots, C,
\end{aligned}
$$

where,

- C : total number of groups.
- α : maximum number of groups to which a user can belong at the same time.

Lemma 1: Computational tractability

Problem (1) is NP-hard in general.
GOAL: Design a low-complexity algorithm to suboptimally solve problem (1).

Define following variables and changes of variables

$$
\begin{aligned}
\mathbf{x}_{\mathbf{c}} \triangleq\left(x_{1, c} \cdots, x_{K, c}\right)^{\top}, \mathbf{y}_{c} \triangleq 2 \mathbf{x}_{c}-\mathbf{1}_{K} \\
\mathbf{W} \triangleq\left(\begin{array}{cccc}
0 & w_{2,1} & \cdots & w_{K, 1} \\
w_{1,2} & 0 & \cdots & w_{K, 2} \\
\vdots & \vdots & \cdots & \vdots \\
w_{1, K} & w_{2, K} & \cdots & 0
\end{array}\right)
\end{aligned}
$$

where,
-1 1_{K} : entry one column vector.
Combining semidefinite relaxation method with the Schur complement, problem (1) can be relaxed as

$$
\begin{aligned}
\max _{\mathrm{Y}_{c \succeq 0, \forall c}} & \frac{1}{4} \sum_{c=1}^{C}\left(\varsigma-\operatorname{tr}\left(\mathbf{W} \mathrm{Y}_{c}\right)\right) \\
\text { s.t. } & \sum_{c=1}^{C} \mathbf{y}_{c} \leq \bar{\alpha} \\
& \operatorname{tr}\left(\operatorname{diag}\left(\mathbf{y}_{c}\right)\right) \leq \bar{\tau}, \forall c \\
& \operatorname{diag}\left(\mathrm{Y}_{c}\right)=\mathbf{1}_{K} \\
& \left(\begin{array}{cc}
\mathrm{Y}_{c} \mathbf{y}_{c} \\
\mathbf{y}_{c}^{\top} & 1
\end{array}\right) \geq 0, \forall c
\end{aligned}
$$

Problem (2) is a standard convex optimization problem and can be efficiently solved using CVX.

We develop a randomized procedure, in the vein of Gaussian randomization, to convert the optimal solution of (2) into a feasible solution to problem (1).

Algorithm 1 A randomized algorithm to solve problem (1)
input an optimal solution $Y_{c}^{\star}, \forall c$ to problem (2).
2: Generate $\boldsymbol{\xi}_{c} \sim \mathcal{N}\left(\mathbf{0}, \mathrm{Y}_{c}^{\star}\right), \forall c$;
Set $\widehat{\boldsymbol{\xi}_{c}}=\boldsymbol{\xi}_{c} / \operatorname{tr}\left(\operatorname{diag}\left(\boldsymbol{\xi}_{c}\right)\right), \forall c$;
: Generate L vector samples $\overline{\mathbf{y}}_{c}^{l}, l=1, \cdots, L$ feasible for problem (1) such that each entry $\widehat{y}_{k, c}^{l}, k=1, \cdots, C$ is drawn from the following distribution:

$$
\widehat{y}_{k, c}^{l}=\left\{\begin{array}{l}
1 \\
-1 \text { with probability }\left(1+\bar{\xi}_{k, c}\right) / 2 \\
-1 \text { with probability }\left(1-\bar{\xi}_{k, c}\right) / 2
\end{array}\right.
$$

Compute $l^{\star}=\arg \max _{l=1, \ldots, L \frac{1}{4}} \sum_{c=1}^{C}\left(s-\left(\overline{\mathbf{y}}_{c}^{l}\right)^{\top} \mathbf{W}_{\tilde{\mathbf{y}}_{c}^{l}}\right)$;
6: output the solution $\widehat{\mathbf{y}}_{c}=\widehat{\mathbf{y}}_{c}^{l^{\star}}, \forall c$.

4.3 Bandwidth allocation problem

The bandwidth allocation problem is formulated as

$$
\begin{align*}
\max _{0 \leq \gamma_{c} \leq 1, \forall c} & \sum_{c, k \in \Gamma(c)} \gamma_{c} \bar{R}_{k, c} \\
\text { s.t. } \quad & \bar{R}_{k} \leq \sum_{c=1}^{C} \gamma_{c} \widetilde{R}_{k, c}, \forall k \tag{3}\\
& \sum_{c=1}^{C} \gamma_{c} \leq 1
\end{align*}
$$

The rate of the k th user in group c is given by

$$
\widetilde{R}_{k, c}=\mathcal{B} \frac{T_{c}-|\Gamma(c)|}{T_{c}} \log _{2}\left(1+\frac{\rho_{d}\left(\sum_{m=1}^{M} \nu_{m k}\right)^{2}}{\rho_{d} \sum_{\substack{m=1 \\
m}}^{\sum_{\substack{k}}^{\tau} \tau \Gamma(c)} \begin{array}{l}
\tau \\
k^{\prime} \neq k
\end{array}} \nu_{m k^{\prime}} \beta_{m k}+1\right)
$$

where,

- \mathcal{B} : bandwidth of the system.
- $\nu_{m k} \triangleq \frac{\rho_{p} \beta_{m k}^{2}}{1+\rho_{p} \beta_{m k}}$: variance of $\hat{g}_{m k}$.
- ρ_{d} : downlink transmit power.
- $\Gamma(c)$: set of users that belong to group c.

Problem (3): a convex linear optimization problem. Optimal solution: interior-point method.

5 Numerical Results

Figure 3: Comparison of CDFs of normalized large-scale fading correlation for $K=20, \alpha=6, C=4$

Figure 4: Average Downlink Throughput versus the number of APs and different K values $(\tau=K)$

6 Acknowledgements

This research has been performed in the framework of the Horizon 2020 project ONE5G (ICT-760809) receiving funds from the European Union.

