Spatially Oversampled Demultiplexing in mmWave LoS MIMO

P. Raviteja⁽¹⁾ and U. Madhow⁽²⁾

(1) ECSE Department, Monash University, Clayton, VIC 3800, Australia
(2) ECE Department, University of California, Santa Barbara, CA, USA

The potential of LoS MIMO

Prior analog approach

Numerical results

* Spatial degrees of freedom ~ $(A_t A_r)/(\lambda R)^2$ ~ f_c^2 (fixed form factor) [1] A_t, A_r – transmit and receive antenna apertures

* Available bandwidth $\sim f_c$

• Digitally programmable analog delays – introduce artificial analog delays to mimic the ideal channel

Our observation

- * Data rates ~ f_c^3 strong incentive to push up
- carrier frequency to mmWave

Example: 4×4 MIMO at 130GHz

 \rightarrow Channel for ideally aligned LoS MIMO system

$$\mathbf{H} = \begin{bmatrix} 1 & e^{-j\phi} & e^{-2j\phi} & e^{-j\phi} \\ e^{-j\phi} & 1 & e^{-j\phi} & e^{-2j\phi} \\ e^{-2j\phi} & e^{-j\phi} & 1 & e^{-j\phi} \\ e^{-j\phi} & e^{-2j\phi} & e^{-j\phi} & 1 \end{bmatrix}, \phi = \pi d^2 / \lambda R$$

H is invertible, if $d = \sqrt{R\lambda/2}$ (34 cm at 130)

- ◇ Channel can be inverted with appropriate spatial oversampling
- ◇ FIR space-time equalizers with symbol rate sampling
- \diamond Small number of taps \rightarrow both fully digital and hybrid implementations become possible

Spatially oversampled reception

Figure 1: 2X spatial oversampling within the same form fac-

actual receivers

additional receivers

 $W_0 | 20 | 10 | 7 | 5 |$

Figure 3: BER of the proposed oversampled LoS MIMO system for different window lengths with $N_t = 4$ and QPSK

Figure 4: BER of the proposed oversampled LoS MIMO system for different sampling offsets at extra receive antennas

 \rightarrow Performance improves with window length until W_0 and saturates thereafter

GHz)

 \rightarrow Achievable data rates > 100 Gbps $20 \times 4 \times 2 = 160$ Gbps (20 GBaud, QPSK)

Spatial demux at 10s of GBaud: How?

 \star Simple approach: invert the channel **H** \star Vulnerable to even small misalignments

 \star Even a small $\theta(5^{\circ})$ introduce 2 channel symbol delay (T_{tx}) at 20 GHz symbol rate $\left(\frac{d \tan(\theta)}{TC} \approx 2\right)$ \star Channel becomes frequency selective [2]

tor.

 \checkmark Spatial oversampling is natural as distance b/w actual receivers $d = 34 \text{ cm} >> \lambda$

Tabl	e 1:	Tra	ade-	off	betv	veen	N_r
and	W_0	for	L =	= 6	and	N_t =	= 4

 \checkmark Time domain complexity reduces as spatial oversampling increases

- \rightarrow Window length of W_0 and T/2 sampling offset are necessary to avoid error floors
- \rightarrow Misaligned system with $N_r = 8$ performs better than an ideally aligned system with $N_r = 4$ due to better noise averaging

Conclusion

- Geometric misalignments in LoS MIMO cause frequency selectivity • Spatial oversampling, along with *designed*
- delay diversity, is an effective approach to combat the frequency selectivity
- Can trade spatial oversampling against time complexity
- Particularly attractive architecture: double the number of receivers within the same form factor

 $\begin{bmatrix} \mathbf{y}_K \\ \mathbf{y}_{K-1} \\ \vdots \\ \mathbf{y}_{K-W+1} \end{bmatrix} = \begin{bmatrix} \mathbf{H}_0 \cdots \mathbf{H}_{L-1} \cdots \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{H}_0 & \cdots & \mathbf{H}_{L-1} \cdots & \mathbf{0} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{H}_0 & \cdots & \mathbf{H}_{L-1} \end{bmatrix} \begin{bmatrix} \mathbf{x}_K \\ \mathbf{x}_{K-1} \\ \vdots \\ \mathbf{x}_{K-L-W+1} \end{bmatrix}$

Conventional DSP architecture \Rightarrow performance floor

• Symbol rate FIR space-time equalizer \rightarrow performance floor

• Temporal oversampling out of the question at 20 GBaud

Figure 2: The variation of delays at the different receive antennas

• **H** is not a well-conditioned channel!

• Offset sampling (T/2 a robust choice) for additional antennas helps in obtaining a well-conditioned channel

References

[1] E. Torkildson, U. Madhow, and M. Rodwell, "Indoor millimeter wave MIMO: Feasibility and performance," IEEE Trans. Wireless Commun., vol. 10, no. 12, pp. 4150-4160, Dec. 2011.

[2] B. Mamandipoor, M. Sawaby, A. Arbabian, and U. Madhow, "Hardware-constrained signal processing for mmWave LoS MIMO," in IEEE 49th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov. 2015.

Acknowledgements

This work was supported in part by the US National Science Foundation under grant CNS-1518812, and by a gift from Facebook, and by the Graduate Research International Travel Grant of the Faculty of Engineering at Monash University.