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Motivation

; Inference for discrete biological time series is often hard

; Difficulty: “Memory” modelling
E.g. for a binary time series with memory length of only 20 bits

220 parameters must be estimated before even getting started

; Need A LOT of data

; Difficulty: Big Data

Most existing methods do not realistically scale with large data

Even “Big Data” are not enough for classical estimation

; Need smarter, parsimonious models



Earlier Work

; Rissanen’s 1983-1986 fundamental work on
the Minimum Description Length (MDL) principle
and the introduction of tree/FSMX sources

; The basic results of Willems et al 1995-2000 on data compression
via Context Tree Weighting (CTW) and related algorithms

; Classical inferential procedures and asymptotics
of Bühlmann et al’s 1999-2004
Variable-Memory Markov chains (VLMC)
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Fixed- and Variable-Memory Markov Chain Models

Markov chain {. . . , X0, X1, . . .} with alphabet A = {0, 1, . . . ,m− 1}
of size m

Memory length d P (Xn|Xn−1, Xn−2, . . .) = P (Xn|Xn−1, Xn−2, . . . , Xn−d)

Distribution To fully describe it, we need to specify

md conditional distributions P (Xn|Xn−1, . . . , Xn−d)

one for each context (Xn−1, . . . , Xn−d)

Problem md grows very fast, e.g., with m = 8 symbols

and memory length d = 10, we need ≈ 109 distributions

Idea Use variable length contexts described by a context tree T



Variable-Memory Markov Chains: An Example

Alphabet m = 3 symbols θ02000 Model:

Memory length d = 5 θ02001 context tree T

θ02002

Each past string Xn−1, Xn−2, . . .
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Alphabet m = 3 symbols θ02000 Model:
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θ022Parameters: θ = {θs ; s ∈ T}
The distr of Xn given the past

is given by the distr on that leaf

E.g. P (Xn = 1|Xn−1 = 0, Xn−2 = 2, Xn−2 = 2, Xn−3 = 1, . . .) = θ022(1)
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Applications

Model selection Estimation Change-point detection

Segmentation Anomaly detection Markov order estimation

Filtering Prediction Entropy estimation

Causality testing Compression Content recognition
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3. θ = {θs; s ∈ T} for all the parameters (given T )

4. X = X−d+1, . . . X0, X1, . . . , Xn all the observed data

Prior on models Indexed family of priors on trees T of depth ≤ D

π(T ) = πD(T ;β) = α|T |−1β|T |−LD(T )

with α = (1− β)1/(m−1); |T | = # leaves of T ; LD(T ) = # leaves at D

[Lemma: This is OK]

Prior on parameters Given a context tree T , the parameters θ = {θs; s ∈ T}
are taken to be independent

with each π(θs|T ) ∼ Dirichlet(1
2
, 1
2
, . . . , 1

2
)
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Bayesian Inference of VMMCs

Likelihood Given a model T and parameters θ = {θs; s ∈ T}

f(X|θ, T ) =
n∏
i=1

P (Xi|Xi−1
i−D) =

∏
s∈T

∏
j∈A

θs(j)
as(j)

where the count vectors as are defined by:

as(j) = # times letter j follows context s in Xn
1

Model selection goal: The posterior distribution

π(T |X) =

∫
θ f (X|θ, T )π(θ|T ) dθ π(T )

f (X)

Main obstacle: The mean marginal likelihood

f (X) =
∑
T

π(T )

∫
θ

f (X|θ, T )π(θ|T ) dθ

; the number of models in the sum grows doubly exponentially in D
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4 1. [Tree. ] Construct a tree with nodes corresponding to all contexts

of length 1, 2, . . . , D contained in X

4 2. [Estimated probabilities. ] At each node s compute

the count vectors as and the probabilities

Pe,s =

∏m−1
j=0 [(1/2)(3/2) · · · (as(j)− 1/2)]

(m/2)(m/2 + 1) · · · (m/2 +Ms − 1)

where Ms = as(0) + · · · + as(m− 1)

4 3. [Maximal probabilities. ] At each node s compute

Pm,s =

{
Pe,s, if s is a leaf

max{βPe,s, (1− β)
∏

j∈A Pm,sj}, o/w

4 4. [Pruning. ] For each node s, if the above max is achieved

by the first term, then prune all its descendants
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Theorem
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Theorem

The (pruned) tree T ∗1 resulting from the MAPT procedure

has maximal a posteriori probability among all trees:

π(T ∗1 |X) = max
T
π(T |X) = max

T

{∫
θ f (X|θ, T )π(θ|T ) dθ π(T )

f (X)

}

Note

The MAPT computes a doubly exponentially hard quantity

in O(n ·D2) time

One of the very few examples of nontrivial Bayesian models

for which the mode of the posterior is explicitly computable

probably the most complex/interesting one
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∗
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(ii) Mean marginal likelihood f (X) computed like the MAP
but with averages instead of maxima

(iii) Model posterior probabilities π(T |X) =
π(T )
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s∈T Pe,s

f (X)

(iv) Posterior odds
π(T |X)

π(T ′|X)
=
π(T )

π(T ′)

∏
s∈T,s6∈T ′ Pe(as)∏
s∈T ′,s 6∈T Pe(as)

(v) Full conditional density of θ

π(θ|T,X) ∼
∏
s∈T

Dirichlet(as(0) + 1/2, as(1) + 1/2, . . . , as(m− 1) + 1/2)

(vi) MCMC exploration of the posterior

Metropolis-within-Gibbs sampling from π(θ, T |X) using (iv) and (v)



A Large Data Set: Spike Trains

Data Single neuron spike train in frontal eye fields (FEF) area
located in the frontal cortex (Brodmann area 8)
of the primate (monkey) brain

Study FEF-V4 coupling during attention
FEF is responsible for saccadic and voluntary eye movement
Important role in the control of visual attention

MAPT With n ≈ 108 data points (ms resolution)

m = 2, β = 1/2 and depth D = 130

[MIT-NIH data: Gregoriou-Gotts-Zhou-Desimone Science (2012)]



A Large Data Set: Spike Trains

Data Single neuron spike train in frontal eye fields (FEF) area

Study FEF-V4 coupling during attention

MAPT With n ≈ 108 data points (ms resolution)

m = 2, β = 1/2 and depth D = 130

Resulting MAPT model

Number of leaves: |T | = 1054

Max depth: D = 130

Max number of 1s/context: 3 (and two contexts with 4)

Max number consecutive 1s: 2 (chemistry)

Departure from simple renewal at 30ms

; 1st/2nd order Markov renewal structure
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Goal: Understand structure, complexity, variation and function
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A Fun Data Set: Wood Peewee Bird Song

Data Recorded bird song data, transcribed as a sequence of (mono-)phthongs
Goal: Understand structure, complexity, variation and function

[Craig (1943) “The song of the wood pewee”]

[Berchtold-Raftery (2002) “The MTD model”]MAPT With n = 1327 samples

m = 3, β = 3/4 and depth D = 10
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posterior: π(T ∗1 |x) ≈ 12.4%

prior: π(T ∗1 ) ≈ 3× 10−4



Wood Peewee Bird Song: Next 4 Models
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π(T ∗3 |x) ≈ 1.7%

π(T ∗2 |x) ≈ 2.2%

π(T ∗4 |x) ≈ 1.7% π(T ∗5 |x) ≈ 1.7%
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Bird Song Models: Comparison with Other Methods

MAPT VLMC MTD gMTD
result T ∗1 , d = 5 complex tree, d = 18 complete, d = 10 complete, d = 2
AIC 687.4 796.8 1102.1 966.8
BIC 801.4 1273.6 1143.5 1003.0

Our Bayesian framework gives

4 interesting and interpretable results

4 good models by any metric

4 a quantitative measure of accuracy

4 allows for more applications

4 rich model-selection information via k-MAPT and MCMC
E.g., in 106 steps, with an acceptance rate of ≈ 0.575

we visit 269562 different models

The 100 most visited trees have 9-17 leaves and depths 4 ≤ d ≤ 6



Extensions, Applications

; Results on empirical (including some “big”) data

� Genetics (DNA/RNA)

� Proteins and cross-omics data

� Neuroscience

� Whale/dolphin/bird song data

Applications

Model selection Estimation Change-point detection
Segmentation Anomaly detection Markov order estimation
Filtering Prediction Entropy estimation
Causality testing Compression Content recognition


