Deep Tree Models for 'Big' Biological Data

Ioannis Kontoyiannis *U of Cambridge*

joint work with Lambros Mertzanis, Athina Panotopoulou, Maria Skoularidou

19th IEEE Intern Workshop on Signal Proc Advances in Wireless Comm Kalamata, Greece, June 2018

European Union European Social Fund

MINISTRY OF EDUCATION & RELIGIOUS AFFAIRS M A N A G I N G A U T H O R I T Y

Co-financed by Greece and the European Union

 \rightsquigarrow Inference for discrete biological time series is often hard

\rightsquigarrow Inference for discrete biological time series is often hard

→ Difficulty: "Memory" modelling

E.g. for a binary time series with memory length of only 20 bits 2^{20} parameters must be estimated before even getting started

\rightsquigarrow Need A LOT of data

 \rightsquigarrow Inference for discrete biological time series is often hard

→ Difficulty: "Memory" modelling

E.g. for a binary time series with memory length of only 20 bits 2^{20} parameters must be estimated before even getting started

 \rightsquigarrow Need A LOT of data

\rightsquigarrow Difficulty: Big Data

Most existing methods do not realistically scale with large data Even "Big Data" are not enough for classical estimation

 \rightsquigarrow Need smarter, parsimonious models

Earlier Work

- → Rissanen's 1983-1986 fundamental work on the Minimum Description Length (MDL) principle and the introduction of tree/FSMX sources
- → The basic results of Willems et al 1995-2000 on data compression via Context Tree Weighting (CTW) and related algorithms
- → Classical inferential procedures and asymptotics of Bühlmann et al's 1999-2004
 Variable-Memory Markov chains (VLMC)

Fixed- and Variable-Memory Markov Chain Models

Markov chain

 $\{\ldots, X_0, X_1, \ldots\}$ with alphabet $A = \{0, 1, \ldots, m-1\}$ of size m

Fixed- and Variable-Memory Markov Chain Models

Markov chain

 $\{\ldots, X_0, X_1, \ldots\}$ with alphabet $A = \{0, 1, \ldots, m-1\}$ of size m

Memory length *d* $P(X_n|X_{n-1}, X_{n-2}, ...) = P(X_n|X_{n-1}, X_{n-2}, ..., X_{n-d})$

Markov chain {...

 $\{\ldots, X_0, X_1, \ldots\}$ with alphabet $A = \{0, 1, \ldots, m-1\}$ of size m

Memory length *d* $P(X_n|X_{n-1}, X_{n-2}, ...) = P(X_n|X_{n-1}, X_{n-2}, ..., X_{n-d})$

Distribution To fully describe it, we need to specify m^d conditional distributions $P(X_n|X_{n-1}, \ldots, X_{n-d})$ one for each context $(X_{n-1}, \ldots, X_{n-d})$

Markov chain	$\{\ldots, X_0, X_1, \ldots\}$ with alphabet $A = \{0, 1, \ldots, m-1\}$ of size m
Memory length d	$P(X_n X_{n-1}, X_{n-2}, \ldots) = P(X_n X_{n-1}, X_{n-2}, \ldots, X_{n-d})$
Distribution	To fully describe it, we need to specify m^d conditional distributions $P(X_n X_{n-1}, \ldots, X_{n-d})$ one for each context $(X_{n-1}, \ldots, X_{n-d})$
Problem	$m{m}^d$ grows very fast, e.g., with $m=8$ symbols and memory length $d=10$, we need $pprox 10^9$ distributions

Markov chain	$\{\ldots, X_0, X_1, \ldots\}$ with alphabet $\mathbf{A} = \{0, 1, \ldots, m-1\}$ of size \mathbf{m}
Memory length	d $P(X_n X_{n-1}, X_{n-2}, \ldots) = P(X_n X_{n-1}, X_{n-2}, \ldots, X_{n-d})$
Distribution	To fully describe it, we need to specify m^d conditional distributions $P(X_n X_{n-1}, \ldots, X_{n-d})$ one for each context $(X_{n-1}, \ldots, X_{n-d})$
Problem	$m{m^d}$ grows very fast, e.g., with $m=8$ symbols and memory length $d=10$, we need $pprox 10^9$ distributions
Idea Us	se variable length contexts described by a ${f context}$ tree T

E.g.
$$P(X_n = 1 | X_{n-1} = 0, X_{n-2} = 2, X_{n-2} = 2, X_{n-3} = 1, ...) = \theta_{022}(1)$$

- \rightarrow **Parsimony** E.g. above with memory length 5 instead of $3^5 = 243$ conditional distributions, only need to specify 13
- \checkmark For an alphabet of size m and memory depth d there are m^d contexts \Rightarrow potentially huge savings

Variable-Memory Representation: Advantages

- \rightarrow **Parsimony** E.g. above with memory length 5 instead of $3^5 = 243$ conditional distributions, only need to specify 13
- \checkmark For an alphabet of size m and memory depth d there are m^d contexts \Rightarrow potentially huge savings
- → Determining the underlying context tree of an empirical time series is of great scientific and engineering interest

Variable-Memory Representation: Advantages

- \checkmark Parsimony E.g. above with memory length 5 instead of $3^5 = 243$ conditional distributions, only need to specify 13
- \checkmark For an alphabet of size m and memory depth d there are m^d contexts \Rightarrow potentially huge savings
- → Determining the underlying context tree of an empirical time series is of great scientific and engineering interest

Applications

Model selection	Estimation
Segmentation	Anomaly detection
Filtering	Prediction
Causality testing	Compression

Change-point detection Markov order estimation Entropy estimation Content recognition *Notation.* 1. Models \equiv Trees

- 2. X_i^j denotes the block $(X_i, X_{i+1}, \ldots, X_j)$
- 3. $\theta = \{\theta_s; s \in T\}$ for all the parameters (given T)
- 4. $X = X_{-d+1}, \ldots X_0, X_1, \ldots, X_n$ all the observed data

Notation. 1. Models \equiv Trees 2. X_i^j denotes the block $(X_i, X_{i+1}, \dots, X_j)$ 3. $\theta = \{\theta_s; s \in T\}$ for all the parameters (given T) 4. $X = X_{-d+1}, \dots, X_0, X_1, \dots, X_n$ all the observed data

Prior on models Indexed family of priors on trees T of depth $\leq D$ $\pi(T) = \pi_D(T; \beta) = \alpha^{|T|-1} \beta^{|T|-L_D(T)}$

with $\alpha = (1 - \beta)^{1/(m-1)}$; |T| = # leaves of T; $L_D(T) = \#$ leaves at D [Lemma: This is OK]

Notation. 1. Models \equiv Trees 2. X_i^j denotes the block $(X_i, X_{i+1}, \dots, X_j)$ 3. $\theta = \{\theta_s; s \in T\}$ for all the parameters (given T) 4. $X = X_{-d+1}, \dots, X_0, X_1, \dots, X_n$ all the observed data

Prior on models Indexed family of priors on trees T of depth $\leq D$ $\pi(T) = \pi_D(T; \beta) = \alpha^{|T|-1} \beta^{|T|-L_D(T)}$ with $\alpha = (1 - \beta)^{1/(m-1)}$; |T| = # leaves of T; $L_D(T) = \#$ leaves at D

[Lemma: This is OK] **Prior on parameters** Given a context tree T, the parameters $\theta = \{\theta_s; s \in T\}$ are taken to be independent

with each $\pi(\theta_s|T) \sim \text{Dirichlet}(\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2})$

Bayesian Inference of VMMCs

Likelihood Given a model
$$T$$
 and parameters $\theta = \{\theta_s; s \in T\}$
$$f(X|\theta, T) = \prod_{i=1}^n P(X_i|X_{i-D}^{i-1}) = \prod_{s \in T} \prod_{j \in A} \theta_s(j)^{a_s(j)}$$

where the **count vectors** a_s are defined by:

 $a_s(j) = \#$ times letter j follows context s in X_1^n

Bayesian Inference of VMMCs

Likelihood Given a model
$$T$$
 and parameters $\theta = \{\theta_s; s \in T\}$
$$f(X|\theta, T) = \prod_{i=1}^n P(X_i|X_{i-D}^{i-1}) = \prod_{s \in T} \prod_{j \in A} \theta_s(j)^{a_s(j)}$$

where the **count vectors** a_s are defined by:

 $a_s(j) = \#$ times letter j follows context s in X_1^n

Model selection goal: The posterior distribution $\pi(T|X) = \frac{\int_\theta f(X|\theta,T)\pi(\theta|T) \ d\theta \ \pi(T)}{f(X)}$

Bayesian Inference of VMMCs

Likelihood Given a model
$$T$$
 and parameters $\theta = \{\theta_s; s \in T\}$
$$f(X|\theta, T) = \prod_{i=1}^n P(X_i|X_{i-D}^{i-1}) = \prod_{s \in T} \prod_{j \in A} \theta_s(j)^{a_s(j)}$$

where the **count vectors** a_s are defined by:

 $a_s(j) = \#$ times letter j follows context s in X_1^n

Model selection goal: The posterior distribution

$$\pi(T|X) = \frac{\int_{\theta} f(X|\theta, T) \pi(\theta|T) \, d\theta \, \pi(T)}{f(X)}$$

Main obstacle: The mean marginal likelihood

$$f(X) = \sum_{T} \pi(T) \int_{\theta} f(X|\theta, T) \pi(\theta|T) \, d\theta$$

 \rightsquigarrow the number of models in the sum grows *doubly exponentially* in D

Maximum A Posteriori Probability Tree Algorithm (MAPT)

△ 1. [*Tree.*] Construct a tree with nodes corresponding to all contexts of length 1, 2, ..., D contained in X

Maximum A Posteriori Probability Tree Algorithm (MAPT)

- △ 1. [*Tree.*] Construct a tree with nodes corresponding to all contexts of length 1, 2, ..., D contained in X
- \triangle 2. [Estimated probabilities.] At each node s compute the count vectors a_s and the probabilities

$$P_{e,s} = \frac{\prod_{j=0}^{m-1} [(1/2)(3/2) \cdots (a_s(j) - 1/2)]}{(m/2)(m/2 + 1) \cdots (m/2 + M_s - 1)}$$

where $M_s = a_s(0) + \dots + a_s(m-1)$

- △ 1. [*Tree.*] Construct a tree with nodes corresponding to all contexts of length 1, 2, ..., D contained in X
- \triangle 2. [Estimated probabilities.] At each node s compute the count vectors a_s and the probabilities

W

$$\boldsymbol{P_{e,s}} = \frac{\prod_{j=0}^{m-1} [(1/2)(3/2) \cdots (a_s(j) - 1/2)]}{(m/2)(m/2 + 1) \cdots (m/2 + M_s - 1)}$$

here $M_s = a_s(0) + \cdots + a_s(m - 1)$

 $\Delta 3. \quad [Maximal probabilities.] \text{ At each node } s \text{ compute}$ $P_{m,s} = \begin{cases} P_{e,s}, & \text{if } s \text{ is a leaf} \\ \max\{\beta P_{e,s}, (1-\beta) \prod_{j \in A} P_{m,sj}\}, & \mathsf{o/w} \end{cases}$

- △ 1. [*Tree.*] Construct a tree with nodes corresponding to all contexts of length 1, 2, ..., D contained in X
- \triangle 2. [Estimated probabilities.] At each node s compute the count vectors a_s and the probabilities

$$\boldsymbol{P_{e,s}} = \frac{\prod_{j=0}^{m-1} [(1/2)(3/2) \cdots (a_s(j) - 1/2)]}{(m/2)(m/2 + 1) \cdots (m/2 + M_s - 1)}$$

where $M_s = a_s(0) + \cdots + a_s(m-1)$

- $\Delta 3. \quad [Maximal probabilities.] At each node s compute$ $<math display="block"> P_{m,s} = \begin{cases} P_{e,s}, & \text{if s is a leaf} \\ \max\{\beta P_{e,s}, (1-\beta) \prod_{j \in A} P_{m,sj}\}, & \text{o/w} \end{cases}$
- \triangle 4. [*Pruning.*] For each node *s*, if the above max is achieved by the first term, then prune all its descendants

Theorem

The (pruned) tree T_1^* resulting from the MAPT procedure has maximal *a posteriori* probability among all trees:

$$\pi(T_1^*|X) = \max_T \pi(T|X) = \max_T \left\{ \frac{\int_{\theta} f(X|\theta, T) \pi(\theta|T) \, d\theta \, \pi(T)}{f(X)} \right\}$$

Theorem

The (pruned) tree T_1^* resulting from the MAPT procedure has maximal *a posteriori* probability among all trees:

$$\pi(T_1^*|X) = \max_T \pi(T|X) = \max_T \left\{ \frac{\int_{\theta} f(X|\theta, T) \pi(\theta|T) \, d\theta \, \pi(T)}{f(X)} \right\}$$

Note

- The MAPT computes a doubly exponentially hard quantity in ${\cal O}(n\cdot D^2)$ time
- One of the very few examples of nontrivial Bayesian models for which the mode of the posterior is explicitly computable probably the most complex/interesting one

(i) Top k MAP models

 $T_1^*, T_2^*, \ldots, T_k^*$

(i) Top k MAP models
(ii) Mean marginal likelihood

 $T_1^*, T_2^*, \dots, T_k^*$

 $f(X)\;\; {\rm computed}\; {\rm like}\; {\rm the}\; {\rm MAP}\;\; {\rm but}\; {\rm with}\; {\rm averages}\; {\rm instead}\; {\rm of}\; {\rm maxima}\;$

(i) *Top k MAP models*

(ii) Mean marginal likelihood

 $T_1^*, T_2^*, \dots, T_k^*$

 $f(X) \;\; {\rm computed} \; {\rm like} \; {\rm the} \; {\rm MAP} \;$ but with averages instead of maxima

(iii) Model posterior probabilities

$$\pi(T|X) = \frac{\pi(T) \prod_{s \in T} P_{e,s}}{f(X)}$$

(i) Top k MAP models

(ii) Mean marginal likelihood

 $T_1^*, T_2^*, \dots, T_k^*$

 $f(X)\;\; {\rm computed}\; {\rm like}\; {\rm the}\; {\rm MAP}\;\; {\rm but}\; {\rm with}\; {\rm averages}\; {\rm instead}\; {\rm of}\; {\rm maxima}\;$

(iii) Model posterior probabilities

(iv) Posterior odds

$$\begin{aligned} \pi(T|X) &= \frac{\pi(T) \prod_{s \in T} P_{e,s}}{f(X)} \\ \frac{\pi(T|X)}{\pi(T'|X)} &= \frac{\pi(T)}{\pi(T')} \frac{\prod_{s \in T, s \notin T'} P_e(a_s)}{\prod_{s \in T', s \notin T} P_e(a_s)} \end{aligned}$$

- (i) Top k MAP models (ii) Mean marginal likelihood (iii) Mean marginal likelihood (iii) Model posterior probabilities (iv) Posterior odds $T_1^*, T_2^*, \dots, T_k^*$ f(X) computed like the MAPbut with averages instead of maxima $\pi(T|X) = \frac{\pi(T) \prod_{s \in T} P_{e,s}}{f(X)}$ $\frac{\pi(T|X)}{\pi(T'|X)} = \frac{\pi(T)}{\pi(T')} \frac{\prod_{s \in T, s \notin T'} P_e(a_s)}{\prod_{s \in T', s \notin T} P_e(a_s)}$
 - (v) Full conditional density of θ

$$\pi(\theta|T,X) \sim \prod_{s \in T} \mathsf{Dirichlet}(a_s(0) + 1/2, a_s(1) + 1/2, \dots, a_s(m-1) + 1/2)$$

- (i) Top k MAP models
 (ii) Mean marginal likelihood
 (iii) Mean marginal likelihood
 f(X) computed like the MAP but with averages instead of maxima
 (iii) Model posterior probabilities
 π(T|X) = π(T) Π_{s∈T} P_{e,s}
 - (iv) Posterior odds

$$\begin{aligned} \pi(T|X) &= \frac{\pi(T) \prod_{s \in T} P_{e,s}}{f(X)} \\ \frac{\pi(T|X)}{\pi(T'|X)} &= \frac{\pi(T)}{\pi(T')} \frac{\prod_{s \in T, s \notin T'} P_e(a_s)}{\prod_{s \in T', s \notin T} P_e(a_s)} \end{aligned}$$

(v) Full conditional density of θ

$$\pi(\theta|T,X) \sim \prod_{s \in T} \mathsf{Dirichlet}(a_s(0) + 1/2, a_s(1) + 1/2, \dots, a_s(m-1) + 1/2)$$

(vi) MCMC exploration of the posterior

Metropolis-within-Gibbs sampling from $\pi(\theta, T|X)$ using (iv) and (v)

A Large Data Set: Spike Trains

- **Data** Single neuron spike train in frontal eye fields (FEF) area located in the frontal cortex (Brodmann area 8) of the primate (monkey) brain
- **Study** FEF-V4 coupling during attention FEF is responsible for saccadic and voluntary eye movement Important role in the control of visual attention
- **MAPT** With $n \approx 10^8$ data points (ms resolution) m = 2, $\beta = 1/2$ and depth D = 130

[MIT-NIH data: Gregoriou-Gotts-Zhou-Desimone Science (2012)]

Data Single neuron spike train in frontal eye fields (FEF) area **Study** FEF-V4 coupling during attention

MAPT With $n \approx 10^8$ data points (ms resolution) m = 2, $\beta = 1/2$ and depth D = 130

Resulting MAPT model

Number of leaves: |T| = 1054Max depth: D = 130Max number of 1s/context: **3** (and two contexts with 4) Max number consecutive 1s: **2** (chemistry) Departure from simple renewal at **30ms**

 \sim 1st/2nd order Markov renewal structure

Data Recorded bird song data, transcribed as a sequence of (mono-)phthongs Goal: Understand structure, complexity, variation and function

> [Craig (1943) "The song of the wood pewee"] [Berchtold-Raftery (2002) "The MTD model"]

Data Recorded bird song data, transcribed as a sequence of (mono-)phthongs Goal: Understand structure, complexity, variation and function

Wood Peewee Bird Song: Next 4 Models

Bird Song Models: Comparison with Other Methods

	MAPT	VLMC	MTD	gMTD
result	T_1^* , $d = 5$	complex tree, $d = 18$	complete, $d = 10$	complete, $d = 2$
AIC	687.4	796.8	1102.1	966.8
BIC	801.4	1273.6	1143.5	1003.0

Bird Song Models: Comparison with Other Methods

	MAPT	VLMC	MTD	gMTD
result	T_1^* , $d = 5$	complex tree, $d = 18$	complete, $d = 10$	complete, $d = 2$
AIC	687.4	796.8	1102.1	966.8
BIC	801.4	1273.6	1143.5	1003.0

Our Bayesian framework gives

- \triangle interesting and *interpretable* results
- \triangle good models by any metric
- \triangle a quantitative measure of accuracy
- \bigtriangleup allows for more applications

Bird Song Models: Comparison with Other Methods

	MAPT	VLMC	MTD	gMTD
result	T_1^* , $d = 5$	complex tree, $d = 18$	complete, $d = 10$	complete, $d = 2$
AIC	687.4	796.8	1102.1	966.8
BIC	801.4	1273.6	1143.5	1003.0

Our Bayesian framework gives

- \triangle interesting and *interpretable* results
- \triangle good models by any metric
- \triangle a quantitative measure of accuracy
- \triangle allows for more applications
- \triangle rich model-selection information via k-MAPT and MCMC
 - E.g., in 10^6 steps, with an acceptance rate of ≈ 0.575
 - we visit 269562 different models
 - The 100 most visited trees have 9-17 leaves and depths $4 \leq d \leq 6$

\sim Results on empirical (including some "big") data

- ▷ Genetics (DNA/RNA)
- ▷ Proteins and cross-omics data
- ▷ Neuroscience
- ▷ Whale/dolphin/bird song data

Applications

Model selection Segmentation Filtering Causality testing Estimation Anomaly detection Prediction Compression Change-point detection Markov order estimation Entropy estimation Content recognition