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Motivation

~~ Inference for discrete biological time series is often hard

~~ Difficulty: “Memory” modelling

E.g. for a binary time series with memory length of only 20 bits

229 parameters must be estimated before even getting started

~> Need A LOT of data

~~ Difficulty: Big Data
Most existing methods do not realistically scale with large data
Even “Big Data” are not enough for classical estimation

~> Need smarter, parsimonious models




Earlier Work

~> Rissanen’s 1983-1986 fundamental work on
the Minimum Description Length (MDL) principle
and the introduction of tree/FSMX sources

~» The basic results of Willems et al 1995-2000 on data compression
via Context Tree Weighting (CTW) and related algorithms

~» Classical inferential procedures and asymptotics
of Buthlmann et al's 1999-2004
Variable-Memory Markov chains (VLMC)
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Fixed- and Variable-Memory Markov Chain Models

Markov chain {..., Xo, Xq,...} with alphabet A ={0,1,...,m —1}
of size m

Memory length d P(X,|X,,_1, X, 2,...) = P(X,| X1, X2, ..., X0_4)

Distribution To fully describe it, we need to specify
m? conditional distributions P(X,|X,_1,..., X,_q)
one for each context (X, _1,..., X, _q)

Problem m< grows very fast, e.g., with m = 8 symbols

and memory length d = 10, we need ~ 10° distributions

Idea Use variable length contexts described by a context tree T’
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Variable-Memory Markov Chains: An Example

Alphabet m = 3 symbols 6002000 ¢ 0 Model:
Memory length d = 5 602001 context tree T

902002

Each past string X,,_1, X,,_o, ...
corresponds to a unique context
on a leaf of the tree

Parameters: 0 = {0, ; s € T}
The distr of X,, given the past
is given by the distr on that leaf

Eg P(Xn — 1‘Xn_1 — O, Xn_g — 27 Xn_g = 2, Xn_g = 1, .. > — 0022(1)
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~~ Parsimony E.g. above with memory length 5
instead of 3° = 243 conditional distributions, only need to specify 13

~ For an alphabet of size m and memory depth d there are m? contexts
= potentially huge savings

~~ Determining the underlying
context tree of an empirical

time series is of great scientific 0
and engineering interest > .

Applications
Model selection Estimation Change-point detection
Segmentation Anomaly detection = Markov order estimation
Filtering Prediction Entropy estimation

Causality testing  Compression Content recognition
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Notation. 1. Models = Trees
2. Xz-j denotes the block (X;, X;11,..., X))
3. 8 ={6,;s € T} for all the parameters (given T')
4. X = X_441,...X0,Xq,...,X, all the observed data

Prior on models Indexed family of priors on trees 1" of depth < D
w(T) = mp(T;3) = a/TI=13ITI=Lp(T)

with o = (1 — B)V/"=1: |T| = # leaves of T; Lp(T) = # leaves at D
[Lemma: This is OK]

Prior on parameters Given a context tree T, the parameters 0 = {0, s € T'}

are taken to be independent
with each 7(0,|T) ~ Dirichlet(3,5,...,3)




Bayesian Inference of VMMCs

Likelihood Given a model T" and parameters 6 = {0,;s € T'}
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Bayesian Inference of VMMCs

Likelihood Given a model T" and parameters 6 = {0,;s € T'}

f(X10,T) = HP(X 1x:i7p) =11 1] 0:(5)*¥

seT jeA
where the count vectors a, are defined by:

as(7) = # times letter j follows context s in X'

Model selection goal: The posterior distribution
fe (X0, T)m(0|T)do =(T)
f(X)

m(TX) =

Main obstacle: The mean marginal likelihood

- ZW<T>/9f(X\97T)7r(9\T> do

~~ the number of models in the sum grows doubly exponentially in D
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Maximum A Posteriori Probability Tree Algorithm (MAPT)

A 1.

A 3.

[ Tree. | Construct a tree with nodes corresponding to all contexts
of length 1,2,..., D contained in X

|Estimated probabilities. | At each node s compute
the count vectors a, and the probabilities

[T/ [(1/2)(3/2) -~ (as(j) — 1/2)]
(m/2)(m/24+1)---(m/2+ My —1)
where M, = a4(0)+--- 4+ as(m — 1)

Pe,sz

[Maximal probabilities. | At each node s compute

P, if s is a leaf

Pm,s —
{max{ﬁpe,& (1_6> HjeAPm,sj}; O/W

[Pruning. | For each node s, if the above max is achieved
by the first term, then prune all its descendants
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Theorem: The MAPT Computes the MAP Tree

Theorem

The (pruned) tree 17 resulting from the MAPT procedure
has maximal a posteriori probability among all trees:

(X0, T)m(6|T) d6 W<T>}
f(X)

(17| X) = mTaXﬂ(T]X) = max {fe

Note

The MAPT computes a doubly exponentially hard quantity
in O(n - D?) time

One of the very few examples of nontrivial Bayesian models
for which the mode of the posterior is explicitly computable
probably the most complex/interesting one
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Additional Results

(i) Top &k MAP models Ty, ..., T,
(ii) Mean marginal likelihood f(X) computed like the MAP
but with averages instead of maxima

(T) ] Lser Pes

f(X)
n(T1X)  7(T) | Liersgr Felas)
m(T"| X) B m(T") HseT’,ng P(as)

(iii) Model posterior probabilities m(T|X) = il

(iv) Posterior odds

(v) Full conditional density of 6
(0|7, X) ~ ] | Dirichlet(a,(0) + 1/2,as(1) + 1/2, ... as(m — 1) + 1/2)
seT

(vi) MCMC exploration of the posterior
Metropolis-within-Gibbs sampling from 7 (6, T'|X) using (iv) and (v)




A Large Data Set: Spike Trains

Data Single neuron spike train in frontal eye fields (FEF) area
located in the frontal cortex (Brodmann area 8)
of the primate (monkey) brain

Study FEF-V4 coupling during attention
FEF is responsible for saccadic and voluntary eye movement
Important role in the control of visual attention

MAPT With n =~ 10° data points (ms resolution)
m =2, f=1/2 and depth D = 130

[MIT-NIH data: Gregoriou-Gotts-Zhou-Desimone Science (2012)]




A Large Data Set: Spike Trains

Data Single neuron spike train in frontal eye fields (FEF) area

Study FEF-V4 coupling during attention

MAPT With n = 10° data points (ms resolution)
m =2, 5 =1/2 and depth D = 130

Resulting MAPT model

Number of leaves: |T'| = 1054

Max depth: D = 130

Max number of 1s/context: 3 (and two contexts with 4)
Max number consecutive 1s: 2 (chemistry)

Departure from simple renewal at 30ms

~~» 1st/2nd order Markov renewal structure




A Fun Data Set: Wood Peewee Bird Song

Data Recorded bird song data, transcribed as a sequence of (mono-)phthongs
Goal: Understand structure, complexity, variation and function

[Craig (1943) “The song of the wood pewee” ]
[Berchtold-Raftery (2002) “The MTD model”|

ﬁ'ﬁ\_./_ rﬁ L‘.....,.._ _

[ "] & = -

wu
z pogh-wee —wee-geo
= * “amoo ] T 178028 1
-3
g T
£.
[
" p—
a
2 oi-dT-dee

o [T7e.0.0) 1

Time {seconds)




A Fun Data Set: Wood Peewee Bird Song

Data Recorded bird song data, transcribed as a sequence of (mono-)phthongs
Goal: Understand structure, complexity, variation and function

[Craig (1943) “The song of the wood pewee” ]

MAPT With n = 1327 samples [Berchtold-Raftery (2002) “The MTD model”|

m =3, f =3/4 and depth D = 10

&
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posterior: (7T} |x) ~ 12.4%
prior: 7(T7) ~ 3 x 1074




Wood Peewee Bird Song: Next 4 Models

(15 |x) = 1.7%
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MAPT VLMC MTD gMTD
result | T, d =5 |complex tree, d = 18 | complete, d = 10 | complete, d = 2
AlIC 687.4 796.8 1102.1 966.8
BIC 801.4 1273.6 1143.5 1003.0

Our Bayesian framework gives
/\ interesting and interpretable results
/\ good models by any metric
/\ a quantitative measure of accuracy

/\ allows for more applications

/\ rich model-selection information via k-MAPT and MCMC
E.g., in 10° steps, with an acceptance rate of ~ 0.575

we visit 269562 different models
The 100 most visited trees have 9-17 leaves and depths 4 < d <6




Extensions, Applications

~~ Results on empirical (including some “big”) data

> Genetics (DNA/RNA)
> Proteins and cross-omics data

> Neuroscience
> Whale/dolphin /bird song data

Applications
Model selection Estimation
Segmentation Anomaly detection
Filtering Prediction

Causality testing  Compression

Change-point detection
Markov order estimation
Entropy estimation
Content recognition




