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SP-MP for SCA Experiments (cont.

* Multicast transmit beamforming - an effective technique for : .
- - - - - MIM o (n) -~ il -
ncreasing throughput in multi-antenna systems {gc?:nvavrei oaspml‘);)r, ttl:l: '?)Ii)nlt braosbeI:rLe’PChnlque to massive MIMO } Note that @' (.,.) is bilinear and w and x are both simple, T
» In practice, the BS may have more antennas than RF chains JoInt P ' convex and compact sets | ot sy sow
> antenng elements - small gnd Inexpensive | » SDR lifts tlhe problem to. higher di.mensional space | + By Sion’s Minimax theorem
» RF chains - bulky, expensive, power consuming » Computational complexity of solving SDP: O(N"6.5), so what if . () /e o . () e o
» Use limited number of RF chains to perform multicast N1t? nin_max o\ (W, X) = min max o (W, X) 3
beamforming? » This motivates the search for an approach that : | - | N 3
» Joint multicast beamforming and antenna selection > returns high quality approximate solutions * The optimal golutlon pair is a saddle point that can be efficiently S
* However, the problem is NP-hard > applicable to massive MIMO scenarios SP-MP SCA computed using SP-MP ©
* Prior art: uses semi-definite relaxation (SDR) > more Computationa”y efficient than SDR | |
> high computational complexity and lack of scalability | . * The problem is ready to be solved by the SP-MP SCA algorithm
» We develop a high performance, low complexity algorithm to Q- Why use SP-MP to solve each convex SCA sub-problem > SP-MP is a variant of the mirror descent algorithm E | | | B
handle the joint problem A: Features dimension-independent O(1/t) -rate of convergence > SP-MP uses non-Euclidean projections (computed using 5 ° Number of selecisd antennas (K) >
[Nemirovski’ 04] with cheap (O(MN)) per-iteration costs Bregman divergences)
ackgroun :
S Problem formulation « The projection on the three sets w, s and Ay, can be simply
Joint multicast beamforming and antenna selection erformed (closed form solutions . : S _ _
J « Consider the joint problem in the real domain P o S _( oiect each sub?vector onto unit 12 ball wr Consider scenario with N =10 and M = 16
L, 1 h pro) | et » Affordable to run exhaustive search (upper bound)
Goal: jointly select the “best” subset of antennas and the s g~ I standard Euclidean metric . .
: : i max min W Q,w— A|wl; , _ , o » Allows us to evaluate quality of solution returned by SP-
corresponding beam-forming vectors that can maximize #ER2N me[M] >N, s project onto M-dimensional probability simplex MP SCA
._the minimum received SNR among the users y ot |wl 2 . p w.r.t. (un-normalized) KL-divergence
_ 2= ) ] . . . . . . .
* Problem statement: downlink transmission in a single cell, M- m || 2 Erausive search |
user MISO system served by a BS with N antennas « By applying the following equality to the above problem | | e o o “JH__d,;__,‘;_;_;_:.:..—.—.,;.,;;
(max min WHQmW h (max min WHQmW — )\HWHD max min fm (X) & min max — fm (X) ’ Compare t.he qua”ty and timing performance of the SP-MP S
weCr m » weCn  m XEX me[M] xEXmE[M] SCA algorithm vs the SDR approach =
s.to |[wll* <P, |wlo <K s. to ||w|?< P z
\_ J \_ v, ‘ “zé
X * The downlink channel is generated as :
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* Non-convex and NP-hard problem wlgﬂégl\, n?éaj\)/{[] W QW + Allwl; & Lm
 Use approximation algorithms for computing high quality sub- o h! =,/ — Z aWa, (ONH ym=1,... M
optimal solutions St [wllz <P y Lm 15 5%
» SDR + Gaussian randomization: effective in identifying near- | Simulation parameters : h
optimal solutions for the problem at high computational cost. » Group sparsity and Dual norm: . Consider a scenario with N = 30 and M = 50 umerefseieciedantennas (9
[Mehanr.]a,13] | | | & SR WHQmV_V i )\HV_V”L; ¢ P = 10 dB, nOise Variance = 1
 Alternative: Use successive convex approximation (SCA), a R e  Quter loop iterations is equal to 10, and 1000 iterations
general approximation framework for non-convex problems (st [Iwllz < P y are used for each sub-problem
2 — I » Test for different K (number of selected antennas)
. . | R hp o Wt A X SN » For each K, 200 Monte-Carlo trials Results and Conclusion
SCA: Itergtwely solve a series of convex problems obt.aln.ed by ot W< P + Forbinary search \ys = 2 and Ap = 0
constructing a convex surrogate of the non-convex objective \- J | .
function at each iteration | . * Proposed a first order-based method to handle the joint
< > *  Applying the SCA approach — multicast beamforming and antenna selection problem,
(i max a7 5@ 1) max s N T | T aorthmof B ) which can be applied for massive MIMO scenarios
* First-order based methods to solve each convex sub-problem weRN me[M] ™ s g <1 ! - :  Key idea: Using SCA approach followed by a fast
has bgen used t? handle the problem without antenna st [|[W|2< P M converging SP-MP algorithm to obtain high quality, low-
selection [Konar'17] \- / S complexity solution
» High performance at low complexity . - the piece-wise [inear funct ; A e 1 »  Flexibility: The algorithm can be easily applied to the case
> Fast convergence to a high quality (approximate) solution xpressing the piece-wise linear function as a linear : e : where N is greater than M, and per antenna power
maximization problem over the simplex e L
1 constraint instead of the sum power one.
- Saddle-Point Mirror-Prox (SP-MP) algorithm: A first-order a8 I ) % et
primal-dual algorithm for efficiently solving problems of the i e (Ap W +by’) + AHSﬁilf;(Sls b st e
form : 112 - | | |
min max ¢(x st wlly <P 2 o e x -
XGX yey ¢( J y) \ 2 J Mumber of selected antennas (K)
: " = . SNR VS K N=30
> Thesets X’ and ) are "simple”, convex and compact I r— . e T max-min ’
; A b
> ¢(x,y) is convex in x and concave in y [WEW 0% ( )] - [v%lv < XA ) ]




