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Covert Communication and Square-Root Law

Suppose

• Both Receiver and Eavesdropper observe same AWGN channel (with same noise power);

• Covertness requirement is
D(Pn‖Qn) ≤ δ

where Pn is average output distribution when Transmitter sends a codeword;

Qn is output distribution when Transmitter sends n zeros (pure Gaussian noise).

Then [1], [2]

maximum number of nats over n channel uses =
√
nδ + o(

√
n).

In particular, covert communication capacity (nats per channel use) is zero.

Infinite Bandwidth: Simple Heuristics

Over W Hz and T seconds with white Gaussian noise, one has 2WT independent samples.

=⇒ Total number of nats ∝
√
WT .

=⇒ Positive per-second rate possible if W & T .

Formal Treatment in Continuous Time

Model 1: Input X(·) and output (at both Receiver and Eavesdropper) Y (·) are related by

Y (t) = X(t) + Z(t), t ∈ R,

where Z(·) is a stationary Gaussian process to be further specified later.

• Transmitter is “approximately time-limited”: it maps a message to x(t), t ∈ R, such that

lim
T→∞

∫ T
0 |x(t)|2 dt∫∞
−∞ |x(t)|2 dt

= 1.

•Decoder is strictly time-limited: it maps y(t), t ∈ [0, T ], to decoded message.

• Eavesdropper is not time-limited: covertness constraint is

lim
T→∞

D
(
P∞−∞

∥∥Q∞−∞) = 0,

where P∞−∞ and Q∞−∞ are resp. distributions of Y (t) and Z(t), t ∈ (−∞,∞).

Proposition 1. Assume, for every T , the noise process Z(·) has PSD N0/2 over [−WT ,WT ],
where WT = T 2. Under the above conditions and power constraint

E

[∫ ∞
−∞
|X(t)|2 dt

]
≤ PT,

the covert communication capacity of the channel is P/N0 nats per second.

Prolate Spheroidal Wave Functions (PSWFs) [3], [4]:

There exist 1 > λ1 > λ2 > · · · > 0 (countably infinite) and functions {ψi} such that

1. Each ψi is band-limited to W Hz. Further, the functions {ψi} are orthonormal on R, and complete
in the space of functions that are band-limited to W Hz.

2. The restrictions of {ψi} to the interval [0, T ] are orthogonal:∫ T

0
ψi(t)ψj(t) dt =

{
λi, i = j,

0, i 6= j.

Restrictions of {ψi} to [0, T ] are complete in the space of square integrable functions on [0, T ].

3. For any ε ∈ (0, 1), as WT →∞,

λ2(1−ε)WT → 1

λ2(1+ε)WT → 0.

4. Let Z(·) be stationary Gaussian noise with PSD

N(f ) =

{
N0
2 , |f | ≤ W,

0, |f | > W

restricted to the interval [0, T ], then Z can be written in the Karhunen-Loève expansion

Z(t) =

∞∑
i=1

Ziψi(t), t ∈ [0, T ],

where {Zi} are IID Gaussian random variables of mean zero and variance N0/2.

Proof Sketch of Proposition 1: Fix ε ∈ (0, 1). Our coding scheme is to generate 2(1 − ε)T 3 IID
Gaussian random variables {Xi} each of mean zero and variance PT−2/2, and transmit the signal

X(t) =

(1−ε)T 3∑
i=1

Xiψi(t), t ∈ R,

where {ψi} are PSWFs for the frequency band [−T 2, T 2] and time interval [0, T ]. The proof then
follows classic works [5], [6]; covertness, data rates, and other results all follow from the nice properties
of the PSWFs.

Band-Limited Noise: Good and Bad Models

Model 2: make the following changes from Model 1.

• Transmitter is strictly time-limited: X(t) = 0 w.p. 1 for all t /∈ [0, T ].

• Eavesdropper is also time-limited: covertness constraint is

lim
T→∞

D
(
PT0

∥∥∥QT0 ) = 0.

Proposition 2. Let Z(·) have PSD that equals N0/2 on [−W,W ] and zero elsewhere, where
W is a constant that does not grow with T . Under Model 1, the covert communication ca-
pacity of the channel is zero. Under Model 2, the covert communication capacity is infinity.

Proof Sketch for Model 2: Fix interval [0, T ]. For any positive integer k, generate a sequence of k3

IID Gaussian random variables {Xi} of mean zero and variance k−2. Let

X(t) =

{∑
iXiψi(t), t ∈ [0, T ],

0, otherwise.

By the orthogonality of the PSWFs on [0, T ], the channel can be reduced, for both Eavesdropper and
Receiver, to a set of k3 parallel, independent Gaussian channels Yi = Xi+Zi. The claim then follows
from the discrete-time AWGN results, and the fact that k can be arbitrarily large.

Lesson: Model 2 is bad. When channel has memory (e.g., noise with limited bandwidth), covertness
constraint must not be restricted to communication duration.

Colored Noise

Infinite-bandwidth white noise does not exist, as it would have infinite power. Consider colored
Gaussian noise Z(·) with PSD N(f ) > 0 for all f ∈ R, symmetric around f = 0, satisfying∫ ∞

−∞
N(f ) df <∞.

Let us choose the input signal X(·) to be generated from a stationary Gaussian process with PSD

S(f ) =

{
T−7/4 ·N(f ), f ∈ [−WT ,WT ]

0, otherwise,

where again WT = T 2. We then have [7]

D(PY‖PZ) = T · 1
2

∫ WT

−WT

(
S(f )

N(f )
− log

(
1 +

S(f )

N(f )

))
df ≤ T−1/2

2
,

which tends to zero as T →∞; while

1

T
· I(X;Y) =

∫ WT

−WT

1

2
log

(
1 +

S(f )

N(f )

)
df ≈ T 1/4

2

which tends to infinity as T →∞. Note also
∫WT

−WT
S(f ) df → 0 as T →∞.

The following conjecture remains to be formulated and proven in a true continuous-time setting.

Conjecture 3. If Z(·) is Gaussian noise as above, then the covert communication capacity
of the channel without bandwidth constraint on the input is infinity. Furthermore, this should
hold irrespective of whether an average-power constraint is imposed on the input or not.
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