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e Both Receiver and Eavesdropper observe same AWGN channel (with same noise power);

e Covertness requirement is

D(P"||Q") <6

where P is average output distribution when Transmitter sends a codeword;

Q" is output distribution when Transmitter sends n zeros (pure Gaussian noise).

Then [1], [2]
maximum number of nats over n channel uses = V'nd + o(v/n).

[n particular, covert communication capacity (nats per channel use) is zero.

Infinite Bandwidth: Simple Heuristics

Over W Hz and T seconds with white Gaussian noise, one has 2WT" independent samples.

— Total number of nats oc vVW'T'.

— Positive per-second rate possible if W 2 T

Formal Treatment in Continuous Time

Model 1: Input X(-) and output (at both Receiver and Eavesdropper) Y (-) are related by
Y(t)=X(t)+ Z(t), teR,
where Z(-) is a stationary Gaussian process to be further specified later.

e Transmitter is “approximately time-limited”: it maps a message to z(t), t € R, such that

T
I fo |37(t)‘2dt .
im = =
T—00 f_oo\x(t)\ dt

e Decoder is strictly time-limited: it maps y(t), t € |0, T, to decoded message.

e Favesdropper is not time-limited: covertness constraint is

lim D(P%,||Q%%) =0,

T—00

where P2C_ and Q2% are resp. distributions of Y'(¢) and Z(t), t € (—o0, 00).

Proposition 1. Assume, for every T, the noise process Z(-) has PSD Ny/2 over |—Wp, W,
where W = T?. Under the above conditions and power constraint

E[/OO |X<t>y2dt] < PT,

— 00

the covert communication capacity of the channel is P/Ny nats per second.

Prolate Spheroidal Wave Functions (PSWFs) [3|, [4]:
There exist 1 > A\; > A9 > --- > 0 (countably infinite) and functions {;} such that

1. Each 1p; is band-limited to W Hz. Further, the functions {4p;} are orthonormal on R, and complete
in the space of functions that are band-limited to W Hz.

2. The restrictions of {ap;} to the interval |0, T are orthogonal:

g A =,
/ %(twt)dt{gy T

Restrictions of {1;} to [0, T] are complete in the space of square integrable functions on [0, 7.

3. For any € € (0,1), as WT — o0,

Ao(1—eywr — 1
)‘2(1+6)WT — 0.

4. Let Z(-) be stationary Gaussian noise with PSD

N,
R4
Nm{o, fl>W

restricted to the interval |0, T, then Z can be written in the Karhunen-Loeve expansion
0.0
Z(t) =Y Zjbi(t), te[0,T],
1=1

where {Z;} are IID Gaussian random variables of mean zero and variance Ny/2.

Proof Sketch of Proposition 1: Fix e € (0,1). Our coding scheme is to generate 2(1 — €)T 11D
Gaussian random variables {X;} each of mean zero and variance PT~2/2, and transmit the signal

where {t;} are PSWFs for the frequency band [—72, 77 and time interval [0,7]. The proof then
follows classic works [5], [6]; covertness, data rates, and other results all follow from the nice properties
of the PSWEFss. O]

Band-Limited Noise: Good and Bad Models

Model 2: make the following changes from Model 1.

e Transmitter is strictly time-limited: X (¢) =0 w.p. 1 for all £ & |0, T.

e Favesdropper is also time-limited: covertness constraint is

lim D(POTH@{) — 0.

T—0o0

Proposition 2. Let Z(-) have PSD that equals No/2 on |—W, W| and zero elsewhere, where
W s a constant that does not grow with T'. Under Model 1, the covert communication ca-
pacity of the channel is zero. Under Model 2, the covert communication capacity is infinity.

Proof Sketch for Model 2: Fix interval |0,T]. For any positive integer k, generate a sequence of %
IID Gaussian random variables {X;} of mean zero and variance k2. Let

X(t) = {Zi Xii(t), t€l0,T],

0, otherwise.

By the orthogonality of the PSWFs on [0, T'|, the channel can be reduced, for both Eavesdropper and
Receiver, to a set of k3 parallel, independent Gaussian channels Y, = X, 4+ Z,. The claim then follows
from the discrete-time AWGN results, and the fact that £ can be arbitrarily large. ]

Lesson: Model 2 is bad. When channel has memory (e.g., noise with limited bandwidth), covertness
constraint must not be restricted to communication duration.

Colored Noise

Infinite-bandwidth white noise does not exist, as it would have infinite power. Consider colored
Gaussian noise Z(-) with PSD N(f) > 0 for all f € R, symmetric around f = 0, satisfying

/O;N(f)df< 0.

Let us choose the input signal X (-) to be generated from a stationary Gaussian process with PSD

S(f) = {TW N(f). f e =Wy Wy

0, otherwise,

where again Wp = T2. We then have [7]

D(Py || Pz) :T'%/M;T(w—log(l+%)) if < 7—1/2

which tends to zero as T' — oo; while

Wy 1/4
%~I(X;Y)—/ %log(l—kw)dsz—

W

which tends to infinity as 7" — oo. Note also f_WMY}T S(f)df - 0asT — oo.

The following conjecture remains to be formulated and proven in a true continuous-time setting.

Conjecture 3. If Z(-) is Gaussian noise as above, then the covert communication capacity
of the channel without bandwidth constraint on the input is infinity. Furthermore, this should
hold irrespective of whether an average-power constraint is imposed on the input or not.
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