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Abstract—Many threats in the form of human actions (terrorist attacks,
military actions, etc.) can be stochastically modeled by someone with
relevant expert knowledge. In this work, a threat is taken to be a modeled
sequence of actions that evolve over time and culminate at some ultimate
goal. A model would be a hypothesis as to how a threat would develop, and
what kind of observable evidence it would produce along the way. This
modeling method allows us to attempt detection using the preliminary
evidence of a threat. This would theoretically allow the user to take
preemptive action; i.e., the user can intercede before its culmination. This
work presents a method of stochastically modeling these types of processes
using Hidden Markov Models (HMMs). We then present a detection
scheme based on random finite set (RFS) filters (Bernoulli filters) that
allows for detection of multiple threat processes using a single cluttered
stream of observed data.

I. BACKGROUND

We begin with some collection of patterns of human activity

that have been identified as suspicious or threatening. We wish to

monitor a stream of routine surveillance data and detect if any of

the threatening patterns exist. To be detectable, these patterns should

have a “storyline” type of structure; they should evolve over time and

produce a sequence of observable evidence. Also, the significant part

of the threat – the part we wish to prevent or interfere with – should

occur toward the end of the process so that we receive preliminary

evidence. Threats that develop and culminate instantaneously will not

be considered.

Hidden Markov models (HMMs) are a natural choice for modeling

these process. A HMM is a Markov process – discrete in this case –

whose states are not directly observable, but have some probabilistic

relationship to what is observed. In this application the states would

be stages in the threat process, which can’t be seen but are related

to the observations. General tutorials on HMMs can be found at [5],

[6]. Some previous work has been done on modeling these particular

types of threats with HMMs in [8].

We assume that the observation stream is mostly clutter obser-

vations that do not originate from any threat. If a threat exists,

the observations originating from it are interspersed in the clutter

stream. We further assume that observations from both clutter and

threats take the form of transactions (communication, travel, financial

transactions, etc.) between entities (people, places, objects). In [9]

we showed that detection of a single threat process was improved

by giving each entity a weight between 0 and 1 that indicates its

probability of being involved in the threat and dynamically updating

these weights as we receive observations. Then current observations

involving entities that have been linked to suspicious activity in the

past are taken more seriously.

Since a modeled threat may or may not be present, a Bernoulli

filter lends itself well to the detection problem. The Bernoulli filter
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uses a random finite set (RFS) framework which maintains a target

state estimate that is weighted by the target’s probability of existence.

The work in [3] and [9] uses Bernoulli filters to detect threat models

similar to what we use here.

II. CONTRIBUTIONS

There are two main contributions in this paper. First, we have

revised the structure of the HMM transition and emission matrices

from previous work. We do this partly to make implementation more

streamlined and partly out of necessity since we are now dealing with

multiple target processes.

Second, we present a particle filter that borrows the random finite

set framework from the Bernoulli filter. Since we are now considering

multiple targets, the random finite set representing the joint state

can have more than one element. Because of the single observation

stream, we must perform data association between the filter elements

and the observations.

III. MODELS

III-A Population Model

We define an array of all entity identities E = {e1, e2, ..., eNe}
of size Ne. It is implied that the entities are human actors, but they

could just as easily be locations or objects. For each observation, a

pair of these entities will be linked by a transaction. This assumes that

all entities are uniquely identifiable and will be correctly identified

when observed. This requirement could be relaxed in future work if

a feature based observation model [8] is used.

With all entities identified, we assign to each an indicator Bernoulli

random variable where a value of 1 means the entity is involved in the

threat and 0 means it is not involved. Let us denote the distributions

(probability of value 1) of these indicator random variables as K =
[k1, k2, ..., kNe ]. These are the entity weights that we wish to update

based on observations and use as a clue in the detection. Since we

are dealing with multiple targets and it is possible for an entity to be

involved in one threat and not another, we must create and update

one of these arrays for each filter element.

III-B Observation Model

We define a set Z = {z1, z2, ..., zNz} of all possible transaction

types. This should be an exhaustive set of the transaction types from

clutter and threat processes. We model an observation Oi with the

structure shown in Figure 1, where zi ∈ Z is some transaction

linking entities {eia, eib} ⊂ E .

It is helpful to think of our observation model as an attempt to

give structure to simple sentences where Z is the set of all possible

verbs and E is the set of all possible nouns. In this work we assume

that necessary preprocessing of data can be done to fit observations



roughly into the framework of this model. This is relatively simple

in some cases; e.g. Person A places a call to Person B, or Person X

gets on a flight to City J. However, fitting data to this model can be

harder in some cases; e.g. Person M posts suspicious social media

content, or there is a large crowd of people at Location D.

eia eib

zi

Fig. 1. Structure of an observation

III-C Threat Process Model

III-C1 Transition Model: For this work we have modified the

model of the state transition structure of the HMMs to be as shown

in Figure 2. Let us denote the set of all light colored states as C, and

the set of all shaded states as T .
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Fig. 2. Example Markov chain

All states in C are considered “wait” states and are given a very

high probability of self-transitioning. These states model the long

periods where the threat is not emitting any observations. The states

in T are considered the target states and do not self transition so

are visited only once, if at all. These states provide the sparse “true”

observations that are produced by the threat. This structure allows us

to treat the threat model as a typical HMM, eliminating the need to

code a transition based model as in [8], [3].

The state transition matrix A defining the structure in Fig. 2 would

be (partially) given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 ...
0 pst p′ p′ . . .
... 0 0 0 1 0 . . .

... 0 0 0 1 0 . . .
... 0 pst 0 p′ p′ 0 . . .

... 0 pst 0 0 p′ 0 . . .
... 0 0 0 0 1 0

... 0 0 0 1
... 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where each row is a transition probability mass function for the cor-

responding state. In other words, the element Ai,j is the probability

of transitioning from state i to state j. The wait states self transition

with probability pst and the probabilities of the other transitions p′ are

not of particular importance and are mostly dictated by the constraint

that all rows of A sum to 1. The self transition probabilities are not

generally required to be the same for all wait states. The expected

wait time between any two target states is given by the mean sojourn

time out of the wait state between them [1]. With all self transition

probabilities equal to pst, the expected time between true observations

is

tst =
1

1− pst

(1)

III-C2 Emission Model: At any point in time, an active threat

process will emit either a true observation or nothing. The states in C
always emit nothing. The possible sequences of actions corresponding

to the threat are modeled with the states in T . Each state in T has a

unique emission distribution over Z , stored in the corresponding row

of the emission matrix. Each of these distributions should be relatively

specific, giving weight to only a small number of transaction types.

We must also allow for missed detections of true observations. To

model this effect, we assign each target state a probability of detection

pd. These states then output nothing with probability 1− pd.

For implementation purposes, we append an extra element on to

the right hand side of Z that corresponds to “no observation”. The

emission matrix B models the relationship between the states and this

augmented set of transactions. For the simplest case of one possible

transaction type for each target state, the model shown in Figure 2

could have an emission matrix of the form

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 pd 0 0 ... 0 0 1− pd
0 0 0 0 ... 0 0 1
0 0 0 0 ... 0 pd 1− pd
pd 0 0 0 ... 0 0 1− pd
0 0 0 0 ... 0 0 1
0 0 0 0 ... 0 0 1
0 0 0 0 ... pd 0 1− pd
0 0 0 pd ... 0 0 1− pd
0 0 pd 0 ... 0 0 1− pd
0 0 0 0 ... 0 0 1
0 0 0 0 ... 0 0 1
...

...
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where each row is the emission distribution over the augmented Z
for the corresponding state and must sum to 1.

The transactions emitted by target states always link two entities

drawn independently but exclusively from some unknown population

subset I ⊂ E . Each entity in I is defined as being involved in the

threat we are modeling. The algorithm requires an estimate of how

many entities will be involved in a given threat Ninv, but can assume

no prior information on the identities of the involved entities. It is

assumed that Ninv is such that at least some of the involved entities

appear more than once in true observations, since the real power of

the algorithm comes from involved entities that are observed doing

multiple suspicious activities.

III-D Clutter Process Model

A clutter process Λcl is modeled as a single state HMM that emits

transaction types based on a clutter emission distribution Bcl. This

distribution should give some weight to every transaction type in Z .

In each time step (the discrete transition period of the threat process

Markov chains), the clutter model is made to emit multiple trans-

actions where the types of the transactions are drawn independently

according to Bcl. The number of clutter observations at each step is

assumed Poisson distributed with parameter λcl. The clutter process



also samples two entities uniformly with replacement from the entire

population E to be linked by each of these transactions.

The overall set of observations at some time t is then the union of

the current clutter observations and any true observations that may

be present. This current set of observations will be denoted Ot and

the set of all subsets of observations up to and including time t is

denoted Ot. Note that due to the sparseness of true observations,

most observation sets will contain only clutter.

IV. FILTER

From here on, we assume that we have a set of Nm threat models

Λ = {Λi}Nm
i=1 = {(Ai, Bi, N i

inv)}Nm
i=1 (2)

along with the clutter model (Bcl, λcl).
We now present a method of detecting and tracking the modeled

threats with a particle based RFS filter while simultaneously updating

the entity involvement probabilities in each K.

The filter treats the joint target state as a random finite set S. Since

for now we are not considering multiple simultaneous instances of the

same target model, the RFS has Nm elements, each corresponding to a

particular target model, so S = {Si}Nm
i=1. Each element is either empty

{∅} if the corresponding target doesn’t exist, or it takes on the value

of the current state of the corresponding HMM. More formally, we

can think of the RFS elements as taking on values in the augmented

state space Si ∈ {Xi}�{∅}, where {Xi} is the state space of the ith
model. The filter outputs an estimated pmf f i(S) over this augmented

state space for each filter element. The output f i(S) can also be

thought of as a pmf over the target states {Xi} that is weighted with

a probability of target existence q, where (1 − q) is the probability

that the corresponding RFS element is empty.

IV-A Dynamics

The dynamics of each RFS element are modeled as a Markov

process that governs transitions in the augmented state space {Xi}�
{∅}. This process is completely parameterized by a probability of

target birth pb, a probability of target survival ps, the birth distribution

fb(x), and the corresponding target state transition matrix A. The

transition matrix for the ith element Si is

Πi =

[
ps ·Ai �1 · (1− ps)

pb · fb(x) (1− pb)

]
(3)

where �1 is a column vector of ones that matches the vertical

dimension of Ai. Note that the added row on the bottom and column

on the right correspond to the appended “does not exist” state {∅}.

We will now describe one cycle of the filter in four main stages:

particle resample, data association, update, and prediction.

IV-B Resample Step

Say at time t we are given the predicted pmfs for all filter

elements based on all previous observations and data associations

{f i
t|t−1(S)}Nm

i=1. We first sample a set of Np unique particles

Φ = {φj}Np

j=1 (4)

Each particle is a unique proposal of the current joint state of the

filter elements. That is, any one particle is itself a set given by

φj =
{

S̃
i,j
}Nm

i=1
(5)

where S̃
i,j

is an element of {Xi}� {∅} sampled for the jth particle

according to f i
t|t−1(S

i). Since our models have discrete states, they

lend themselves nicely to this sampling.

We then assign each particle a prior weight based on the predicted

pmfs we sampled from.

Wj
t|t−1 =

Nm∏
i=1

f i
t|t−1(S̃

i,j
), j = 1, 2, ..., Np (6)

IV-C Data Association Step

Now we look at the current observation set

Ot = {O
n}Wn=1 = {(ena , enb , zn)}Wn=1 (7)

Note that the size of the set W can change from one time to the

next since the number of clutter observations is a Poisson random

variable.

For each particle, we find the single most likely data association

σj between the particle states and the set of observations. We use a

modified form of the auction algorithm [2] which assumes a clutter

process that can be assigned multiple observations. The likelihoods

used in the algorithm are

ϕ(On|S̃i,j
) =

{
p(zn|Λcl)(

1
Ne

)2, if S̃
i,j ∈ {Ci, ∅}

p(zn|S̃i,j
)(ki,n

a )(ki,n
b )( 1

Ni
inv

)2, if S̃
i,j ∈ {T i}

(8)

where p(zn|Λcl) is available from Bcl, p(z
n|S̃i,j

) is available from

Bi, and ki,n
a is a (clunky) notation for the current probability that

the first entity in the nth observation is involved in threat process

i. This value along with ki,n
b is available from the current predicted

distributions in Ki which are discussed in more detail in Section V.

To be more precise, the auction algorithm takes as input the logarithm

of these likelihoods and returns the valid assignment such that the

sum of the log likelihoods is maximized. It also returns the value of

the maximized sum which is the total log likelihood and can easily

be converted to the likelihood of the the particle and the association

based on the observation. We will denote this value ϕ(Ot|φj , σj).

We now have a data association for each particle {σj}Np

j=1 where

each association can be expressed as a vector of length W where the

nth element indicates the process to which the nth observation has

been assigned. That is, σj,n = i means that for the jth particle, the

nth observation has been assigned to the ith process. If σj,n = 0,

the nth observation has been assigned to the clutter process.

Using the associations, we can calculate the overall likelihood of

each particle/association pair taking into account the Poisson clutter

model and any missed detections.

L(Ot|φj , σj) = e−λcl ϕ(Ot|φj , σj)
∏

n:σj,n=0

λcl

∏
i:S̃

i,j∈T i,

�n:σj,n=i

(1− pd) (9)

We will refer to this value as Lj for short hand notation.

IV-D Update Step

Now we can update the weight of each particle with the prior

weights from (6) and the likelihoods from (9) with

Wj
t|t =

Lj Wj
t|t−1∑Np

j=1 Lj Wj
t|t−1

(10)

The updated pmf for each filter element is then approximated by

f i
t|t(S) =

Np∑
j=1

Wj
t|t (S = S̃

i,j
) (11)

where (·) is the indicator function. In words, the updated pmf for

process i evaluated at state S is the sum of the updated weights of



all the particles that propose that process i is in state S. It is possible

that a state will have an updated probability mass of 0 – if there

are no particles that propose that state. But if we sample sufficiently

many particles, this will only happen for states whose prior masses

were negligible.

IV-E Prediction Step

The predicted pmf of process i for time t + 1 is based solely on

the modeled dynamics of the RFS element i given in (3). In a pro-

grammed implementation where the updated pmf is a column vector,

the predicted pmf is also a column vector given by multiplication

with the transpose of the transition matrix in (3).

f i
t+1|t(S) = ΠT

i f
i
t|t(S) (12)

The predicted distributions are then used for particle sampling at the

next time step.

V. INVOLVEMENT PROBABILITIES

The vector Ki contains the probability of involvement in the

ith process (weight) for each entity. We model the underlying

entity process as an array of independent indicators over the entire

population where the expected number of “on” indicators at any time

is N i
inv , and the expected amount of time an indicator stays on is

the expected target lifetime.

If we take

Ci =
N i

inv

Ne
(13)

to be the fraction of population expected to be involved, and Di to

be the expected target lifetime, the desired behavior is modeled by a

two state Markov chain with transition matrix

Hi =

⎡
⎢⎣ 1− 1

Di
Ci

Di(1−Ci)

1
Di 1− Ci

Di(1−Ci)

⎤
⎥⎦ (14)

where the first state is the involved or “on” state and the second is

the uninvolved or “off” state. In simulations, this process does not

govern the true entity involvements; instead an involved set is chosen

at the time of target birth and remains the same throughout. But this

model is used for prediction of the entity weights from one time step

to the next.

We have devised a method to update the entity weights

in each Ki based on the current updated estimate given

by the particle filter. Let {em}2Wm=1 be the set of currently

observed entities. Let (em→i φj) denote the binary event “the
observation containing entity m has been associated with process
i in particle j” Once we have the updated particle weights

from (10), the weights of each of the 2W currently observed

entities are updated for each of the processes using the formula

Ki
t|t(e

m) =

Ki
t|t−1(e

m)
(

1
Ni

inv

Np∑
j=1

Wj
t|t (em→iφ

j) + 1
Ne

Np∑
j=1

Wj
t|t (em→iφj)

)
(
Ki

t|t−1(e
m) 1

Ni
inv

Np∑
j=1

Wj
t|t (em→iφj)

)
+

(
1

Ne

Np∑
j=1

Wj
t|t (em→iφj)

) , i = 1, 2, ..., Nm, m = 1, 2, ..., 2W (15)

where (·) is the compliment of the indicator function.

All entity weights, including the current ones updated by (15),

are predicted to the next time step using the dynamics modeled

in 14. Since we are only interested in the weights and not their

complements, this update amounts to

Ki
t+1|t(e

�) =

(
1− 1

Di

)
Ki

t|t(e
�) +

Ci

Di(1− Ci)
(1−Ki

t|t(e
�))

(16)

for

i = 1, 2..., Nm, � = 1, 2, ..., Ne

VI. RESULTS

Performance is studied for a set of 3 synthetic threat models.

A continuous simulation was run where the threat processes were

randomly activated, allowed to complete, and forced to be inactive

for a random “idle period”. The simulation was allowed to run until

each process had been activated at least 200 times. The statistic we

use to declare detection is simply the probability of existence that

the filter has for the process, or 1− p(∅). For a particular threshold

between 0 and 1, a successful detection is declared if the probability

of existence exceeds the threshold at any time while the threat is

active. A false alarm is declared if the threshold is exceeded during

an idle period. Plots of these results for a range of threshold values

are given in Figure 3.

The significant parameter settings for this simulation are: tst = 100
(expected time between true observations), Ne = 2000 (population

size), λcl = 5 (clutter Poisson parameter), and Nz = 75 (the total

number of transaction types). Process 1 has 6 possible paths from

start to finish, emits at most 11 observations, and involves 4 entities.

Process 2 has 4 possible paths from start to finish, emits at most 14

observations, and involves 6 entities. Process 3 has 2 possible paths

from start to finish, emits at most 16 observations, and involves 8

entities. The results suggest that the number of involved entities is

the most significant factor in detectability of these particular models.
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Fig. 3. Probability of detection versus probability of false alarm for the
three threat processes. Each data point corresponds to a particular detection
threshold.



REFERENCES

[1] Y. Bar-Shalom, X. R. Li and T. Kirubarajan, Estimation with Applica-
tions to Tracking and Navigation: Theory, Algorithms and Software, J.
Wiley and Sons, 2001.

[2] D. Bertsekas, “The auction algorithm: A distributed relaxation method
for the assignment problem, Annals of Operations Research, vol. 14, no.
1, pp. 105123, 1988.

[3] K. Granstrm, P. Willett, and Y. Bar-Shalom, “Asymmetric Threat Model-
ing Using HMMs: Bernoulli Filtering and Detectability Analysis”, IEEE
Transactions on Signal Processing, vol. 64, no. 10, pp. 2587-2601, May
2016.

[4] Y. Liu, S. D. Blostein, “Quickest detection of an abrupt change in
a random sequence with finite change-time”, IEEE Transactions on
Information Theory, pp. 1985-1993, November 1994.

[5] L. R. Rabiner and B. H. Juang, “An introduction to hidden Markov
models”, IEEE ASSP Mag., vol. 3, no. 1, pp. 416, Jan. 1986.

[6] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257-
286, Feb. 1989.

[7] B. Ristic, B.-T. Vo, B.-N. Vo, and A. Farina, “A Tutorial on Bernoulli
Filters: Theory, Implementation and Applications”, IEEE Transactions
on Signal Processing, vol. 61, no. 13, pp. 34063430, Jul. 2013.

[8] S. Singh, H. Tu, W. Donat, K. Pattipati, and P. Willett, “Anomaly detec-
tion via feature-aided tracking and hidden Markov models”, Transactions
on Systems, Man, and CyberneticsPart A: Systems and Humans, vol. 39,
no. 1, pp. 144159, Jan. 2009.

[9] Z. Sutton, P. Willett, and Y. Bar-Shalom, “Modeling and Detection of
Evolving Threats Using Random Finite Set Statistics”, to appear in
Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing, Apr. 2018.


