Constant Envelope Transceivers in Millimetre-Wave Massive MIMO: EVM and Link Budget Considerations

E. A. Ball⁺, A. Vasileiadis^{*}

The University of Sheffield, United Kingdom, *†E.A.Ball@sheffield.ac.uk, *AVasileiadis1@sheffield.ac.uk*

INTRODUCTION

- RF 30 GHz ray-tracing simulation,
 - M-MIMO Urban canyon propagating environment
- Constant Envelope (CE) and Variable Envelope (VE) RF signals evaluated in two models
- Multiple mobile terminals employing single carrier PSK modulation

Why?

• Need a simple analytical model that approximates real environment

Glistening Zone Model

The two models

Reflection source	Ray Rich	Ray Sparse	
Road reflections	13 rays	4 rays	
Single wall reflections	8 rays	2 rays	
Double wall reflections	10 rays	2 rays	
Total reflective rays	31	10	

Each BS M-MIMO antenna element

- Understand the effect of the real environment on the M-MIMO TX and RX design.
- Propose simplified TX and RX design architectures.

Physical Model

• Obtain surface reflection coefficients for medium:

 $|\Gamma| = \left|\frac{Z_2 - Z_1}{Z_2 + Z_1}\right|$

• $Z_2 \& Z_1$ perpendicular or parallel impedances:

Air: $\eta_1 = 120\pi$

Lossy media: $\eta_2 = \sqrt{\frac{j\omega\mu}{\sigma+j\omega\varepsilon}} \int_{\sigma+j\omega\varepsilon}^{\infty}$

Use Snell's law to relate angle of incidence & transmission from surface of medium: $sin(\theta_t) = \frac{\gamma_1}{\gamma_2} sin(\theta_i), \gamma_{1,2} = \frac{-\omega\mu}{j\eta_{1,2}}$ Hence $|\Gamma|$ can be predicted

could potentially provoke production of these ray sets – leading to a propagation channel model Photograph courtesy of Edward A Ball, Madeira

MIMO Channel Model

Complex amplitudes of received symbols, after TX **Conjugate Precoding** $R_{VE1,2,3} = \sum_{x} \sum_{y} H_{UE1,2,3}[x, y]T_{composite}[x, y]$ $R_{CE1,2,3} = \sum_{x} \sum_{y} H_{UE1,2,3}[x, y]T_{CE}[x, y]$ $T_{composite}: VE \text{ model} \qquad T_{CE}: CE \text{ model}$ $H_{UE1,2,3}: \text{ Channel transfer function, path of each MIMO BS TX to UE}$ Evaluate symbol EVM and link budget!

What is EVM?

Error Vector Magnitude (EVM) is the vector distance between ideal and measured IQ symbols.

EVM as function of UE1-UE2 relative separation

 $\phi = \text{phase error}$

Reference

Measure

Effects due to TX nonlinearity

TX Nonlinearity & Link Budget

EVM & RX powers for UEs (ray-rich channel), UE1 at 50m, UE2 at 100m, UE3 at 200m from BS

DV concitivity was based on	

CONCLUSIONS

1. RX EVM is **not** a strong function of CE TX but a function of relative proximity of UEs BS distance and propagation

BS URA array size	UE1 EVM VE / CE (%)	UE2 EVM VE / CE (%)	UE3 EVM VE / CE (%)	UE1 RX level (dBm)	UE2 RX level (dBm)	UE3 RX level (dBm)
64x64	1.4/1.5	1.3/1.5	1.2/1.4	-51	-58	-68
51x51	1.4/1.7	2/2	1.9/2.2	-59	-66	-75
32x32	2.1/2.4	3.4/3.5	3.3/3.2	-75	-82	-92
16x16	3.8/4.6	4.1/5.2	4.4/3.9	-99	-106	-116
8x8	12/16	10/12	10/14	-123	-130	-140

RX sensitivity was based on maximizing signal BW use of Coherence BW

The resulting RX sensitivities (table) were, UE1: -70dBm, UE2: -67dBm and UE3: -64dBm

The array size required to achieve link budget exceeds array size required for just interference-based low EVM ray richness

- 2. Pragmatic mmWave M-MIMO modulation schemes should be adaptive, EVMs of 5 30% using low
 - complexity MF conjugate precoding and CE TX chains
- 3. Explicit forming and pointing of a narrow beam does not appear prerequisite
- 4. BS hardware architectures should focus on
 - Low DC power
 - Cost-effective hardware solutions
 - Simple baseband implementations
- 5. Reconfigurable BS enables trade-off between
 - Numbers of UEs supported
 - Service range
 - DC power

