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1. Introduction

Problem statement

• 3D imaging using a single-photon Lidar system

• Extreme conditions: reduced acquisition time, long-range, mul-
tilayered imaging, presence of obscurants ...

•Use of spatial correlations in the observed scene.

⇒ Objectives :
{

- Restore the target’s returns under extreme conditions
- Propose a fast algorithm suitable for real life applications

2. Observation model

We observe N pixels Y = (y1, · · · ,yN ), defined at each temporal
gate k as follows:

yn,k ∼ P
(

sn,k
)

• yn and sn are K × 1 vectors representing the nth observed and
noiseless pixels for K time bins

• P(.) denotes the Poisson distribution

Parametric model

sn,k =

Mn
∑

m=1

[

rn,mg0
(

k − kn,m
)]

+ bn (1)

• rn,m, kn,m are the reflectivity and depth position of the mth
object

• bn is the background noise

• g0 is the system impulse response

•Mn is the number of objects in the nth pixel

Equivalent formulation

sn = G(1) xn (rn,kn, bn) (2)

• gkn,m represents g0 shifted by kn,m

•X is a (K+1)×N matrix containing the parameters of interest

Prior Knowledge/Hypotheses on X

• The elements of X are non-negative

•Hyp. 1: For local regions, a small number of depths are active
with respect to the range window (Mn << K, ∀n)

•Hyp. 2: The observed objects present spatial correlations

3. Proposed Restoration Approach

Cost function

argmin
X

L (X) + iR+
(X) + τ1φv(X) + τ2ψw(X)

• τ1 > 0, τ2 > 0 are fixed regularization parameters

• v > 0,w > 0 are fixed weight vectors

• iR+
(X) is the indicator function that imposes positivity on X

Data statistics L (X) (negative log-likelihood)

L(X) =

N
∑

n=1

K
∑

k=1

{

sn,k (xn)− yn,k log
[

sn,k (xn)
]}

Hyp. 1: Depth regularization φv(X) = ||KvX||2,1

(Left) model in [1], (middle) model in [2], (right) proposed model

Hyp. 2: Intensity regularization ψw(X) = ||HwDhX||1

4. Estimation algorithm using ADMM

Our Problem

argmin
X

H
(

G(1)X
)

+ iR+
(X) + τ1φv (X) + τ2ψw (X)

with L (X) = H
(

G(1)X
)

Equivalent formulation

argmin
X,V

H (V 1) + iR+
(V 2) + τ1||V 3||2,1 + τ2||V 5||1

subject to AX +BV = 0 and
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Alternating direction method of multipliers algorithm

Initialize V
(0)
j ,F (0), ∀j, µ. Set i← 0, conv← 0

while conv= 0 do
Linear system of equations

Update X(i+1) by solving a linear system of equations

Moreau proximity operators

Update V
(i+1)
j , ∀j ∈ {1, · · · , 5} by evaluating their an-

alytical proximal operators

Update Lagrange multipliers

F (i+1)← F (i) −AX(i+1) −BV (i+1)

conv← 1, if the stopping criterion is satisfied.
i = i + 1

end while

where F denotes the Lagrange multipliers

5. Results on synthetic data

Synthetic bowling scene (see Fig. 1-left)

• 123× 139 pixels, and 300 time bins

• Interval of averaged signal Photon-Per-Pixel (PPP): [0.2, 5] ppp

• Interval of Signal to Background (SBR) level: [0.05, 1.25]

• Comparison with:

– Class.: classical cross-correlation algorithm

– BFC: Class. algorithm applied to background-free data

–NR3D: Proposed Nonlocal Restoration of 3D images

Fig. 1: (Left) Synthetic bowling scene. (Right) Picture of the
real target (acquired with 142× 142 pixels).

SRE (in dB) results with respect to SBR and PPP

Signal PPP 5 2 0.8 0.4 0.2
SBR 1.25 0.5 0.2 0.1 0.05

Depth
BFC 17.9 8.7 3.6 1.9 1.0
Class. 11.5 5.3 2.9 2.2 1.9
NR3D 19.8 14.0 11.0 7.5 5.0

Reflect.

BFC 7.3 3.5 −0.4 −3.5 −6.9
Class. 6.6 1.4 −6.5 −13.1 −19.6
NR3D 13.3 13.0 8.4 9.8 3.2

6. Results on real data

Fig. 2: Depth maps for reduced acquisition times-per-pixel
(comparison with RDITV [3])

7. Future work

•Generalize to high-dimensional data (multi-frames, multi-
wavelengths)

• Set the weights v,w using other acquisition modalities to per-
form multi-modal data fusion

References
[1] D. Shin, F. Xu, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth

single-photon imaging,” Opt. Express, vol. 24, no. 3, pp. 1873–1888, Feb 2016.

[2] A. Halimi, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Restoration of multi-

layered single-photon 3D lidar images,” in Proc. EUSIPCO, 2017, pp. 708–712.

[3] A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin,

“Restoration of intensity and depth images constructed using sparse single-photon data,” in

Proc. EUSIPCO, 2016, pp. 86–90.


