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1. Introduction

Problem statement
e 3D imaging using a single-photon Lidar system

e [ixtreme conditions: reduced acquisition time, long-range, mul-
tilayered imaging, presence of obscurants ...

e Use of spatial correlations in the observed scene.
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= Objectives :
{ - Restore the target’s returns under extreme conditions

- Propose a fast algorithm suitable for real life applications

2. Observation model

We observe N pixels Y = (yq, -,y ), defined at each temporal
cate k as follows:

Yn.k ™~ P (Sn,k)

e iy, and s, are /{ X 1 vectors representing the nth observed and
noiseless pixels for /A time bins

° 77() denotes the Poisson distribution

4. Estimation algorithm using ADMM

Our Problem

ougmin (G<1>X) g (X) + 7160 (X) + Toth (X)

with £ (X) = H (G<1>X)

Equivalent formulation

argmin H (V1) +ir, (Vo) +71l|[Vsll21 + [V

subject to AX + BV =0 and

G\ 1T 0 0 0 O
Tgiq 0 -I 0 0 O
A=| K, | B=|0 0 -1 0 0
D, 0 0 0 —I 0O
0 0 0 0 H, -T

Alternating direction method of multipliers algorithm
\
Initialize V;O), F(()), V7, w. Set 1 < 0, convé— 0
while conv= 0 do

Linear system of equations

Update X (i+1) by solving a linear system of equations
Moreau proximity operators

Update V;Hl), Vj € {1,---,5} by evaluating their an-
alytical proximal operators

Update Lagrange multipliers
F(’H—l) . F(Z) . Ax<l—|—1) . Bv(l—i—l)
conv<— 1, if the stopping criterion is satisfied.
1=1+4+1

end while

- J

where F' denotes the Lagrange multipliers

Parametric model

M,
Sn,k = Z [Tn,mg() (/f — kn,m)} + b, (1)

m=1

® I'n.m, kpm are the reflectivity and depth position of the mth
object

e ), is the background noise
® g is the system impulse response

e )/, is the number of objects in the nth pixel

Equivalent formulation

Sy = elty Ty (Tn, kn, bp) (2)
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e g;.  represents g shifted by kp m

e X isa (A +1)x N matrix containing the parameters of interest

Prior Knowledge/Hypotheses on X

e The elements of X are non-negative

e Hyp. 1: For local regions, a small number of depths are active
with respect to the range window (M,, << K,Vn)

e Hyp. 2: The observed objects present spatial correlations

5. Results on synthetic data

Synthetic bowling scene (see Fig. 1-left)

e 123 x 139 pixels, and 300 time bins

e [nterval of averaged signal Photon-Per-Pixel (PPP): (0.2, 5] ppp
e [nterval of Signal to Background (SBR) level: [0.05, 1.25]

e Comparison with:

— Class.: classical cross-correlation algorithm
— BFC: Class. algorithm applied to background-free data
— NR3D: Proposed Nonlocal Restoration of 3D images
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Fig. 1: (Left) Synthetic bowling scene. (Right) Picture of the
real target (acquired with 142 x 142 pixels).

SRE (in dB) results with respect to SBR and PPP

Signal PPP 5 2 108 04 | 0.2
SBR 125 05 0 02 ] 0.1 | 0.05
BFC 179 87 3.6 | 1.9 1.0
Depth | Class. | 11.5 | 5.3 | 2.9 | 2.2 1.9
NR3D|19.8/14.0/11.0 7.5 | 5.0
BFC | 7.3 | 3.5 |—04| —3.5| —6.9
Class.| 6.6 | 1.4 |—6.5|—13.11—19.6
NR3D|13.3/13.0| 8.4 9.8 | 3.2

Reflect.

3. Proposed Restoration Approach

Cost function

arg)r(nin L(X)+ir, (X) + T100(X) + 1ot (X)

o7 > 0,7 > 0 are fixed regularization parameters
ev > (0, w > 0 are fixed weight vectors

® 7 IS ¢ 111d1Cator ITunction al 11mnposes positivl on
k. (X)) is the indicator function that imposes positivity on X

Data statistics £ (X) (negative log-likelihood)

N K
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6. Results on real data
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Fig. 2: Depth maps for reduced acquisition times-per-pixel
(comparison with RDITV [3])

e Generalize to high-dimensional data (multi-frames, multi-
wavelengths)

e Set the weights v, w using other acquisition modalities to per-
form multi-modal data fusion
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