Restoration of Multilayered Single-Photon 3D LiDAR Images

<u>A. Halimi⁽¹⁾</u>, X. Ren⁽¹⁾, A. McCarthy⁽¹⁾, J. Bioucas-Dias⁽²⁾, S. McLaughlin⁽¹⁾, G. S. Buller⁽¹⁾

 $^{(1)}$ Heriot-Watt University, EPS, Edinburgh, U.K, $^{(2)}$ Universidade de Lisboa, ITIST, Portugal

Engineering and Physical Sciences

EPSRC

Research Council

instituto de telecomunicações

This work was supported by the UK Defence Science and Technology Laboratory (DSTL) and EPSRC Grants EP/J015180/1, EP/N003446/1, EP/M01326X/1, EP/K015338/1, and by the Portuguese Science and Technology Foundation under the Project UID/EEA/50008/2013.

1. Introduction

Problem statement

- 3D imaging using a single-photon Lidar system
- Extreme conditions: reduced acquisition time, long-range, multilayered imaging, presence of obscurants ...

Parametric model

$$s_{n,k} = \sum_{m=1}^{M_n} \left[r_{n,m} g_0 \left(k - k_{n,m} \right) \right] + b_n$$

- $r_{n,m}$, $k_{n,m}$ are the reflectivity and depth position of the *m*th object

3. Proposed Restoration Approach

Cost function

(1)

(2)

$$\operatorname{argmin}_{\boldsymbol{X}} \mathcal{L}(\boldsymbol{X}) + i_{\mathbb{R}_{+}}(\boldsymbol{X}) + \tau_{1}\phi_{\boldsymbol{v}}(\boldsymbol{X}) + \tau_{2}\psi_{\boldsymbol{w}}(\boldsymbol{X})$$

• Use of spatial correlations in the observed scene.

 \Rightarrow Objectives :

- Restore the target's returns under extreme conditions
- Propose a fast algorithm suitable for real life applications

2. Observation model

We observe N pixels $\mathbf{Y} = (\mathbf{y}_1, \cdots, \mathbf{y}_N)$, defined at each temporal gate k as follows:

 $y_{n,k} \sim \mathcal{P}\left(s_{n,k}\right)$

- \boldsymbol{y}_n and \boldsymbol{s}_n are $K \times 1$ vectors representing the *n*th observed and noiseless pixels for K time bins
- $\mathcal{P}(.)$ denotes the Poisson distribution

- b_n is the background noise
- g_0 is the system impulse response
- M_n is the number of objects in the *n*th pixel

Equivalent formulation

$$oldsymbol{s}_n = oldsymbol{G}^{(1)} \ oldsymbol{x}_n \left(oldsymbol{r}_n, oldsymbol{k}_n, b_n
ight)$$

- $g_{k_{n,m}}$ represents g_0 shifted by $k_{n,m}$
- X is a $(K+1) \times N$ matrix containing the parameters of interest

Prior Knowledge/Hypotheses on X

- The elements of X are non-negative
- Hyp. 1: For local regions, a small number of depths are active with respect to the range window $(M_n \ll K, \forall n)$
- Hyp. 2: The observed objects present spatial correlations

• $\tau_1 > 0, \tau_2 > 0$ are fixed regularization parameters • $\boldsymbol{v} > 0, \boldsymbol{w} > 0$ are fixed weight vectors • $i_{\mathbb{R}_+}(X)$ is the indicator function that imposes positivity on X

Data statistics $\mathcal{L}(\mathbf{X})$ (negative log-likelihood) $\mathcal{L}(\boldsymbol{X}) = \sum_{n=1}^{n-1} \sum_{k=1}^{n-1} \left\{ s_{n,k} \left(\boldsymbol{x}_n \right) - y_{n,k} \log \left[s_{n,k} \left(\boldsymbol{x}_n \right) \right] \right\}$

Hyp. 1: Depth regularization $\phi_{\boldsymbol{v}}(\boldsymbol{X}) = ||\boldsymbol{K}_{\boldsymbol{v}}\boldsymbol{X}||_{2,1}$

(Left) model in [1], (middle) model in [2], (right) proposed model

Hyp. 2: Intensity regularization $\psi_{\boldsymbol{w}}(\boldsymbol{X}) = ||\boldsymbol{H}_{\boldsymbol{w}}\boldsymbol{D}_{h}\boldsymbol{X}||_{1}$

4. Estimation algorithm using ADMM

Our Problem

 $\operatorname{argmin}_{\boldsymbol{X}} \mathcal{H}\left(\boldsymbol{G}^{(1)}\boldsymbol{X}\right) + i_{\mathbb{R}_{+}}\left(\boldsymbol{X}\right) + \tau_{1}\phi_{\boldsymbol{v}}\left(\boldsymbol{X}\right) + \tau_{2}\psi_{\boldsymbol{w}}\left(\boldsymbol{X}\right)$ with $\mathcal{L}(\mathbf{X}) = \mathcal{H}(\mathbf{G}^{(1)}\mathbf{X})$

Equivalent formulation

 $\underset{\boldsymbol{X},\boldsymbol{V}}{\operatorname{argmin}} \ \mathcal{H}(\boldsymbol{V}_1) + i_{\mathbb{R}_+}(\boldsymbol{V}_2) + \tau_1 ||\boldsymbol{V}_3||_{2,1} + \tau_2 ||\boldsymbol{V}_5||_1$

subject to AX + BV = 0 and

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{G}^{(1)} \\ \mathbb{I}_{K+1} \\ \boldsymbol{K}_{v} \\ \boldsymbol{D}_{h} \\ \boldsymbol{0} \end{bmatrix} \quad \boldsymbol{B} = \begin{bmatrix} -\mathbb{I} \quad \boldsymbol{0} \quad \boldsymbol{0} \quad \boldsymbol{0} \quad \boldsymbol{0} \\ \boldsymbol{0} \quad -\mathbb{I} \quad \boldsymbol{0} \quad \boldsymbol{0} \quad \boldsymbol{0} \\ \boldsymbol{0} \quad \boldsymbol{0} \quad -\mathbb{I} \quad \boldsymbol{0} \quad \boldsymbol{0} \\ \boldsymbol{0} \quad \boldsymbol{0} \quad \boldsymbol{0} \quad -\mathbb{I} \quad \boldsymbol{0} \\ \boldsymbol{0} \quad \boldsymbol{0} \quad \boldsymbol{0} \quad \boldsymbol{H}_{w} \quad -\mathbb{I} \end{bmatrix}.$$

Alternating direction method of multipliers algorithm

Initialize $\boldsymbol{V}_{j}^{(0)}, \boldsymbol{F}^{(0)}, \forall j, \mu$. Set $i \leftarrow 0$, conv $\leftarrow 0$

5. Results on synthetic data

Synthetic bowling scene (see Fig. 1-left)

- 123×139 pixels, and 300 time bins
- Interval of averaged signal Photon-Per-Pixel (PPP): [0.2, 5] ppp
- Interval of Signal to Background (SBR) level: [0.05, 1.25]
- Comparison with:
- -Class.: classical cross-correlation algorithm
- -BFC: Class. algorithm applied to background-free data
- NR3D: Proposed Nonlocal Restoration of 3D images

Fig. 1: (Left) Synthetic bowling scene. (Right) Picture of the

7. Future work

while conv = 0 do

Linear system of equations Update $X^{(i+1)}$ by solving a linear system of equations

Moreau proximity operators Update $\boldsymbol{V}_{i}^{(i+1)}, \forall j \in \{1, \cdots, 5\}$ by evaluating their analytical proximal operators

Update Lagrange multipliers $\boldsymbol{F}^{(i+1)} \leftarrow \boldsymbol{F}^{(i)} - \boldsymbol{A} \boldsymbol{X}^{(i+1)} - \boldsymbol{B} \boldsymbol{V}^{(i+1)}$ $\operatorname{conv} \leftarrow 1$, if the stopping criterion is satisfied. i = i + 1

end while

where \mathbf{F} denotes the Lagrange multipliers

real target (acquired with 142×142 pixels).

SRE (in dB) results with respect to SBR and PPP

Signal	Signal PPP		2	0.8	0.4	0.2
SBR		1.25	0.5	0.2	0.1	0.05
Depth	BFC	17.9	8.7	3.6	1.9	1.0
	Class.	11.5	5.3	2.9	2.2	1.9
	NR3D	19.8	14.0	11.0	7.5	5.0
	BFC	7.3	3.5	-0.4	-3.5	-6.9
Reflect.	Class.	6.6	1.4	-6.5	-13.1	-19.6
	NR3D	13.3	13.0	8.4	9.8	3.2

• Generalize to high-dimensional data (multi-frames, multiwavelengths)

• Set the weights **v**, **w** using other acquisition modalities to perform multi-modal data fusion

References

[1] D. Shin, F. Xu, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, "Computational multi-depth" single-photon imaging," Opt. Express, vol. 24, no. 3, pp. 1873–1888, Feb 2016.

[2] A. Halimi, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, "Restoration of multilayered single-photon 3D lidar images," in Proc. EUSIPCO, 2017, pp. 708–712.

[3] A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, "Restoration of intensity and depth images constructed using sparse single-photon data," in *Proc. EUSIPCO*, 2016, pp. 86–90.