Learning Overcomplete Dictionaries from Markovian Data

Saeed Akhavan¹, Samaneh Esmaeili¹, Masoud Babaie-Zadeh², Hamid Soltanian-Zadeh¹

- ¹ School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- ² School of Electrical and Computer Engineering, University of Sharif, Tehran, Iran

1. Dictionary Learning Problem

✓ Target: factorizing the matrix of training signals into the dictionary
with unit norm columns (atoms), and the coefficient matrix with
sparse columns, i.e.,

$$\{\mathbf{D}, \mathbf{X}\} = \underset{\mathbf{D}, \mathbf{X}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{F}^{2}$$

 $s.t. \|\mathbf{x}_{k}\|_{0} \le N_{0}, \quad 1 \le k \le K$
 $\|\mathbf{d}_{n}\|_{2} = 1, \quad 1 \le n \le N$

Fig 1. Schematic diagram of dictionary learning problem.

> Typical Solution. ----> Alternation Minimization

I. Sparsification:

$$\mathbf{X} = \underset{\mathbf{X}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{F}^{2}$$

$$s.t. \|\mathbf{x}_{k}\|_{0} \leq N_{0}, \quad 1 \leq k \leq K$$

The training signals are considered statistically independent.

$$\mathbf{x}_k = \underset{\mathbf{x}_k}{\operatorname{argmin}} \|\mathbf{y}_k - \mathbf{D}\mathbf{x}_k\|_F^2 \quad s.t. \quad \|\mathbf{x}_k\|_0 \le N_0$$

I. Dictionary Update:

$$\mathbf{D} = \underset{\mathbf{D}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{F}^{2}$$

 $s.t. \|\mathbf{d}_{n}\|_{2} = 1, 1 \le n \le N$

2. Considered Model

✓ Target: Performing dictionary learning when the training signals are not statistically independent, and have the first-order Markovian dependency.

Fig 2. Schematic diagram of the considered model for dictionary learning problem.

- The set of unknown parameters: $\Omega = \underbrace{\{\mathbf{P}, \mathbf{D}, \mathbf{X}\}}_{\Theta} \cup \{s_1, s_2, ..., s_K\}$

Fig 3. In the considered model, assigning y_k to one of the atoms is not independent form the activated state (or atom) for y_{k-1} .

3. Model Parameters Estimation

$$\Theta = \underset{\Theta}{\operatorname{argmax}} \sum_{k=1}^{K} log\{\sum_{s=1}^{S} p(s_k = s | \mathbf{Y}, \Theta) f(\mathbf{y}_k | s_k = s, \Theta)\}$$

$$s.t. \quad \|\mathbf{d}_l^{(s)}\|_2 = 1, \quad \|\mathbf{x}_k^{(s)}\|_0 \le N_0$$

$$s = 1, 2, ..., S, \quad l = 1, 2, ..., L, \quad k = 1, 2, ..., K$$

Expectation - Minimization

And all the second

By determination of θ , the sequence of states, i.e., $\{s_1, s_2, ..., s_K\}$ is determined using Viterbi algorithm.

4. Results

First Scenario: Independent training signals.

$$\mathbf{P}_1 = \begin{bmatrix} 0.55 & 0.45 \\ 0.45 & 0.55 \end{bmatrix}$$

SNR_{dB}	Method	$N_0 = 3$	$N_0 = 4$	$N_0 = 5$
10	MOD	80.6	72.4	4.3
	New MOD	81.2	72.8	4.8
	K-SVD	83.4	81.8	12.9
	New K-SVD	83.7	82.2	14.1
20	MOD	86.5	85.3	77.9
	New MOD	86.9	85.8	77.1
	K-SVD	88.3	87.5	83.5
	New K-SVD	88.4	88.2	82.9
30	MOD	89.1	86.6	83.4
	New MOD	89.6	88.4	85.7
	K-SVD	90.5	89.5	86.2
	New K-SVD	91.7	90.4	86.8
100	MOD	90.1	88.3	85.8
	New MOD	90.3	88.6	86.8
	K-SVD	92.3	90.7	89.5
	New K-SVD	92.4	91.1	89.6

Table 1. Percentage of successful recovery rate in the first scenario where the states are activated almost independently from each other.

> Second Scenario: Dependent training signals.

$$\mathbf{P}_2 = \begin{bmatrix} 0.95 & 0.05 \\ 0.10 & 0.90 \end{bmatrix}$$

SNR_{dB}	Method	$N_0 = 3$	$N_0 = 4$	$N_0 = 5$
10	MOD	70.3	63.6	$\simeq 0$
	New MOD	81.4	71.9	4.6
	K-SVD	75.6	69.3	3.9
	New K-SVD	82.8	83.1	14.4
20	MOD	75.3	68.4	51.8
	New MOD	87.1	84.9	77.2
20	K-SVD	79.6	76.4	72.4
	New K-SVD	88.8	86.5	81.6
	MOD	85.6	84.2	80.6
30	New MOD	88.6	87.7	86.4
30	K-SVD	89.8	86.7	83.1
	New K-SVD	92.1	91.3	85.9
100	MOD	88.2	87.1	84.9
	New MOD	89.8	87.5	85.1
	K-SVD	91.3	90.1	88.2
	New K-SVD	92.5	92.3	88.7

Table 2. Percentage of successful recovery rate in the first scenario where the states are dependent.

7. Conclusion

- ✓ Dependency among the training signals degrade the performance of current dictionary learning algorithm.
- ✓ We investigated the dictionary learning problem when there is the first-order Markovian model in the generation of signals.