WET-DRY CLASSIFICATION USING LSTM AND COMMERCIAL MICROWAVE LINKS

Hai Victor Habi, Prof. Hagit Messer, Fellow, IEEE haivictorh@mail.tau.ac.il, messer@eng.tau.ac.il

Introduction

The task of wet-dry classification using measurements from commercial microwave links (CMLs) is a subject that been studied in depth. In this work we present, for the first time an empirical study on rain classification using long short-term memory (LSTM) units with a multi-variable time series and CMLs, we demonstrate that LSTM can even be used for rain detection (wet-dry classification).

Background

Commercial Microwave Links (CMLs) for rain detection and estimation

Method

The data preprocessing procedure:Normalization, concatenation, sub - sequences splitting and wet / dry sample alignment. The Network Architecture based on LSTM with dynamic and static inputs.

The relation between rain and signal attenuation is given by:

 $A = aR^bL$

CMLs high coverage over land provide more than 4M sensors.

Where L_n is standard Cross Entropy Loss

Experiments

We conducted three experiments, where in each case we used different dynamic input data: errors only (Eq. (4)), attenuations only (Eq. (3)),

Our main contribution is in:

- 1. The use of records of errors in CMLs for rain monitoring.
- 2. The application of RNN techniques on CML data for rain monitoring.

Data description

Our data set based on actual CMLs measurements provided by the cellular company CELLCOM (Israel). Using CMLs static data $x^{(s)}$ and dynamic data RSL, TSL $x_n^{(2)}$ and Error $x_n^{(3)}$. The link error types:

- 1. BBE(Background Block Error):An errored block not occurring as part of an SES.
- 2. ES(Errored Second):A onesecond period with one or more errored blocks
- 3. SES(Severely Errored Sec-

and both errors and attenuations. The confusion matrix results over the three experiments

The experiments accuracy are shown in Table 1.

ond):A period one-second which contains ≥ 30 percentage errored blocks.

Sec-4. UAS(Unavailable pertaining ond):Intervals to an Unavailable Time.

 $x^{(s)} = [L, F_l, F_h, BW, h_s^{(n)}, h_s^{(f)}, h_a^{(n)}, h_a^{(f)}]$ $, h_{b}^{(n)}, h_{b}^{(f)}, g_{a}^{(n)}, g_{a}^{(f)}, b, C, a^{(n)}, a^{(f)}]$ (2) $x_n^{(2)} = [mRSL, MRSL, mTSL, MTSL]$ (3) $x_n^{(3)} = [BBE, ES, SES, UAS]$ (4) $x_n^{(d)} = [\bar{x}_n^{(3)}, \bar{x}_{n-1}^{(3)}, \bar{x}_{n-2}^{(3)}, \bar{x}_{n-3}^{(3)}, \bar{x}_n^{(2)}, \bar{x}_{n-1}^{(2)}, \bar{x}_{n-2}^{(2)}, \bar{x}_{n-3}^{(2)}]$ (5)

Table 1: Top epoch result

Dataset	Training	Validation
Error	76.7%	74%
Attenuation	91.5%	90.5%
Error and		
Attenuation	91.9%	90.8%

Acknowledgements

We would like to thank Cellcom for providing the link data that used for build the dataset, also we would like to thank the IMS for the rain gauge measurement and thank too all the research team member for there help.