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Introduction

In an extension of narrowband array processing to the broadband case, we can utilise the
equivalent of the eigen- or singular value decomposition using polynomial matrices. These
matrices are key to a number of applications ranging from broadband MIMO systems [1] to angle
of arrival estimation [2] and more.

This research aims to investigate the impact of estimation errors in the sample space-time
covariance matrix and how this perturbation affects the parahermitian/polynomial matrix
eigenvalue decomposition (PEVD).

Space-Time Covariance Matrix and Parahermitian EVD

◮ We assume that an M -element array records data into a vector x[n] ∈ C
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◮ Ideal space-time covariance matrix:
R[τ ] = E

{

x[n]xH[n− τ ]
}

, R[τ ] ∈ CM×M

◮ R[τ ] is a matrix of auto- & cross- correlation
sequences

◮ Symmetry: R[τ ] = R
H[−τ ]

◮ Cross-spectral density R(z) =
∑

τ R[τ ]z−τ

is a polynomial matrix.

◮ PEVD: R(z) = H(z)Λ(z)HP(z)

◮ Parahermitian: RP(z) = R
H(1/z∗) = R(z)

◮ Paraunitary matrix: H(z)HP(z) = I

Source Model

◮ To form a valid comparison, a ground truth must be acquired. To describe this ground truth
we use the source model:
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◮ The source model assumes that x[n] is generated by convolutively mixing L independent
source signals.

◮ Source signals sℓ[n] can be tied to their individual power spectral densities (PSD) via the
innovation filters s.t. Sℓ(z) = Fℓ(z)F

P
ℓ (z) using the fact that uℓ[n] are zero mean

uncorrelated unit variance Gaussian signals.

◮ The convolutive mixing matrix H[n] is described by a network of transfer functions
H(z) : C → C

M×L•—◦ H[n].

◮ The cross-spectral density (CSD) matrix is given by R(z) = H(z)S(z)HP(z) where
S(z) = diag{S1(z), ..., SL(z)}.

Sample Space-Time Covariance Matrix

In practice we do not have access to unlimited data samples and therefore must estimate R[τ ]
using N samples which results in a sample space-time covariance matrix:

R̂[τ ] =
1

N − τ

N−1
∑

n=τ

x[n]xH[n− τ ]; (1)

◮ This approach assumes ergodicity which implies that limN→∞ R̂(z) = R(z).

◮ From this we can define the error between the ground truth and estimation:
E[τ ] = R̂[τ ]−R[τ ].

◮ From the ergodicity and unbiased estimate of (1) we can say that limN→∞E[τ ] = 0, ∀τ .

◮ Estimated PEVD: R̂(z) = Ĥ(z)Λ̂(z)ĤP(z).

◮ We assume that N > M samples are available so that there is a chance where
rank{R̂[τ ]} = rank{R[τ ]}.

For N = 100 and M = 3 we provide a normalised version of the matrix E[τ ]:
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Perturbation of Eigenvalues and Eigenvectors

When we calculate R̂(z) the corresponding eigenvalues and -vectors are affected as a result. We
can evaluate R̂(z)|z=ejΩ = R̂(ejΩ) and the equivalent in the ground truth case.

◮ From [3] we gain bounds for the perturbation of the mth eigenvalue if the eigenvalues are
ordered from highest to lowest power:

λM{E(ejΩ0)} ≤ λ̂m(e
jΩ0)− λm(e

jΩ0) ≤ λ1{E(ejΩ0)}. (2)

◮ From [4] we relate the difference between the eigenvalues of R(ejΩ0) & R̂(ejΩ0) and the
spectral-norm of the error E(ejΩ0):

|λ̂m(e
jΩ0)− λm(e

jΩ0)| ≤ κ{U(ejΩ0)}‖E(ejΩ0)‖2, (3)

where κ{U(ejΩ0)} = 1 due to the paraunitary property of U(z).

For the eigenvectors, we can characterise the eigenvector subspace perturbation as dependent on
the distance between their associated eigenvalues. From this, we can say that the closer that the
eigenvalues become to each other the larger the perturbation of the subspace can become.

◮ To quantify these eigenvector perturbations, we define a metric based upon a modified version
of the subspace correlation:

γm(e
jΩ) = 1− |um(e

jΩ)ûH
m(e

jΩ)|, 0 ≤ γm(e
jΩ) ≤ 1. (4)

Results

For these results, two models are used: Model 1 uses known eigenvalues that cross at specific
frequencies whilst Model 2 is designed to result in well-separated eigenvalues.

Distribution of R̂(ejΩ) with the eigenvalues of R(z) as a solid line (Model 1) over an ensemble of
105 runs, 128 frequency bins for the 5, 25, 75 and 95th percentiles (dotted line) and median (solid
line):

Distribution of γm(e
jΩ) (Model 1) with parameters defined above:

Measured distribution of γm(e
jΩ) (Model 2) with percentiles defined above:
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Conclusion

When estimating a cross-spectral density matrix from a finite data set, the arising estimation error
results in perturbations of the ground truth eigenvalues and eigenvectors of its parahermitian
matrix eigenvalue decomposition.

Evaluated on the unit circle, bounds for the perturbation of both quantities can be stated: while
the eigenvalue perturbation depends on the estimation error, the eigenvector perturbation
additionally depends on the distance between the ground truth eigenvalues. These findings have
been demonstrated in and underpinned by a number of simulations.
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