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Problem statement:

minimise total transmission costs

subject to noise reduction performance

spatial cue preservation
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Motivation

J.	Zhang,	S.	P.	Chepuri,	R.	C.	Hendriks,	and	R.	Heusdens,	“Microphone	subset	selection	for	MVDR	beamformer based	
noisereduction,”	IEEE/ACM	Trans.	Audio,	Speech,	Language	Process.,	vol.	25,	no.	8,	pp.	550–563,	2018.
J.	Zhang,	R.	Heusdens,	and	R.	C.	Hendriks	“Rate-distributed	spatial	filtering	for	noise	reduction	in	wireless	acoustic	
sensor	networks,”	IEEE/ACMTrans.	Acoustics,	Speech,	Language	Processing, 2018. (to appear)

• Energy e�ciency is essential in the design of algorithms in WASNs since

usually each sensor has a limited energy budget (e.g., battery).

• In general, there are two ways to reduce energy costs:

- Microphone subset selection

- Bit-rate allocation

• Rate allocation is more general than sensor selection, i.e., sensor selection

(hard/binary decision) can be seen as a special case of rate allocation

(soft/multiple decision).
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Fundamentals
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ˆy = y + q 2 CM ,

where

y = x+ z+ v

=

IX

i=1

aisi +
JX

j=1

hjuj + v

= As+Hu+ v,

where ai = [ai1, ai2, · · · , aiM ]

T
, hj = [hj1, hj2, · · · , hjM ]

T
,A = [a1, · · · ,aI ], s =

[s1, · · · , sI ]T ,H = [h1, · · · ,hJ ] 2 CM⇥J ,u = [u1, · · · , uJ ]

T
.
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• Second-order statistics:

R
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where R

xx

=

PI
i=1 E{xix

H
i } and R

zz

=

PJ
j=1 E{zizHi }.

• Assumption: the target sources, interfering sources and quantisation noise

are mutually uncorrelated, such that

R

n+q

= R

nn

+R

qq

.

• Uniform quantisation:

R

qq

=

1
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where Ak = max{|yk|} and bk, 8k denotes the rate for the kth sensor node.
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Fundamentals

• Transmission energy model:

- SNR over communication channels: SNRk = d�2
k Ek/Vk.

- Channel capacity:

bk =

1

2

log2 (1 + SNRk) .

- Transmission energy:

Ek = d2kVk(4
bk � 1),

which holds under two conditions: 1) for spectrum-limited applica-

tions; 2) quantize at the channel capacity (i.e., the upper bound).
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Binaural LCMV beamforming

A.	I.	Koutrouvelis,	R.	C.	Hendriks,	R.	Heusdens,	and	J.	Jensen,	“Relaxedbinaural	LCMV	beamforming,”	IEEE/ACM	Trans.	Audio,	
Speech, Language Process.,	vol.	25,	no.	1,	pp.	137–152,	2017.
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BLCMV

= [wT
L wT

R]
T

- Preserving target sources:

wH
L ai = aiL

wH
R ai = aiR

)
=) ITF

in

xi
= ITF

out

xi
=) ⇤H

1

w = f
1

- Preserving interfering sources:

ITF

in

nj
= ITF

out

nj
) hjL

hjR
=

wH
L hj

wH
Rhj

, 8j,

=) wH
L hjhjR �wH

RhjhjL = 0 =) ⇤H
2

w = f
2

- Binaural cues: ILD = |ITF|2, IPD = \ITF.
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Binaural LCMV beamforming

A.	I.	Koutrouvelis,	R.	C.	Hendriks,	R.	Heusdens,	and	J.	Jensen,	“Relaxedbinaural	LCMV	beamforming,”	IEEE/ACM	Trans.	Audio,	
Speech, Language Process.,	vol.	25,	no.	1,	pp.	137–152,	2017.
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• Binaural LCMV (BLCMV) beamforming for joint noise reduction and

spatial cue preservation can be formulated as

ˆwBLCMV = argmin

w
wH

˜Rn+qw, s.t. ⇤Hw =

˜f ,

where

˜Rn+q =


Rn+q 0
0 Rn+q

�
2 C2M⇥2M ,

⇤ =

⇥
⇤1 ⇤2

⇤
2 C2M⇥(2I+J ),

˜f =
⇥
fH1 fH2

⇤T 2 R2I+J .

• BLCMV beamformer:

ˆwBLCMV =

˜R�1
n+q⇤(⇤H

˜R�1
n+q⇤)

�1
˜f .
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Problem formulation

• General problem formulation:

min

w,b

MX

k=1

d2kVk(4
bk � 1)

s.t. w

H
Rn+qw  �

↵
⇤

H
w = f ,

bk 2 Z+, bk  b0, 8k,

(P1)

where

- �: minimum output noise power;

- ↵ 2 (0, 1]: performance controller;

- b0: maximum rate, e.g., 16 bits per sample.

Introduction
Motivation
Fundamentals
BLCMV
RD-BLCMV
Simulations
Conclusion



10

Rate-distributed BLCMV beamforming

• Substitution of the BLCMV beamformer, we can obtain

min
b

MX

k=1

d2kVk(4
bk � 1)

s.t. f̃H(⇤HR̃�1
n+q⇤)�1f̃  �

↵
bk 2 Z+, bk  b0, 8k.

(P2)

• Convex optimisation:
⇤HR̃�1

n+q⇤ = Z, (1)

f̃HZ�1f̃  �

↵
, (2)

where Z 2 S2I+J
+ is Hermitian.
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Rate-distributed BLCMV beamforming

• Define a constant vector e =

h
12
A2

1
, · · · , 12

A2
M

i
and introduce a variable

change tk = 4

bk 2 Z+, 8k, such that R�1
qq = diag (e� t),

min

t,Z

MX

k=1

d2kVk(tk � 1)

s.t.


Z f

fH �
↵

�
⌫ O2I+J+1


˜R�1
nn +

˜R�1
qq

˜R�1
nn⇤

⇤H
˜R�1
nn ⇤H

˜R�1
nn⇤� Z

�
⌫ O2M+2I+J

1  tk  4

b0 , 8k.

• The integer rates can be resolved by bk = log4 tk, 8k and randomised

rounding technique.
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Simulation results
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• Setting: 6 mics in (4⇥ 3)m 2D room, fs=16kHz, T60=200ms, ↵ = 0.8
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Simulation results
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• Noise reduction performance and energy usage ratio (EUR):
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Simulation results
• Performance of spatial cue preservation:

�ILD =
JX

j=1

X

!

⇣
ILDj(!)� ˜ILDj(!)

⌘2
; �IPD =

JX

j=1

X

!

⇣
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⌘2
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Simulation results
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Conclusion
• We studied rate-distributed BLCMV beamforming for wireless binaural

hearing aids. The proposed method was formulated by minimizing the

energy usage and constraining the noise reduction performance.

• Under the utilization of a BLCMV beamformer, the problem was solved

by semi-definite programming with the capability of joint noise reduction

and binaural cue preservation.

• The proposed method can achieve better energy e�ciency by distributing

bit rates, and preserve more interferers’ spatial cues by activating more

sensors as compared to sensor selection approaches.
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Conclusion

Thank you!

• We studied rate-distributed BLCMV beamforming for wireless binaural

hearing aids. The proposed method was formulated by minimizing the

energy usage and constraining the noise reduction performance.

• Under the utilization of a BLCMV beamformer, the problem was solved

by semi-definite programming with the capability of joint noise reduction

and binaural cue preservation.

• The proposed method can achieve better energy e�ciency by distributing

bit rates, and preserve more interferers’ spatial cues by activating more

sensors as compared to sensor selection approaches.
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Appendix

• Matrix inversion lemma:

˜R�1
n+q = (

˜Rnn +

˜Rqq)
�1

=

˜R�1
nn � ˜R�1

nn(
˜R�1
nn +

˜R�1
qq )

�1
˜R�1
nn,

where

˜Rnn =


Rnn 0
0 Rnn

�
, ˜Rqq =


Rqq 0
0 Rqq

�
.

• Convex relaxation:

⇤HR�1
n+q⇤ ⌫ Z

=) ⇤H
˜R�1
nn⇤� Z ⌫ ⇤H

˜R�1
nn(

˜R�1
nn +

˜R�1
qq )

�1
˜R�1
nn⇤

=)

˜R�1
nn +

˜R�1
qq

˜R�1
nn⇤

⇤H
˜R�1
nn ⇤H

˜R�1
nn⇤� Z

�
⌫ O2M+2I+J .


