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; e, thickness of
Prism L the layer

Assuming that e, is in the nanometer
range, the measure y,pn is proportional
to the fraction of occupied sites 671, (with
m, the mass of A.) [3, 4]:
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Theoretical results

Mixture model Z(K,C)=Y =KMC'(1p1% + KC")

@ Low concentration: assuming Non-identifiable area
KC" « 1, then

Y ~ KMC"

- NMF [5]

© Saturation: assuming high
concentrations and/or high
affinities, then KC* » 1

Y ~KMC'MKC"

Linear model (NMF)

=> highly non-identifiable:
Y ~ D/ KMC'D> A D, KC'D, C

Comon under the Langmuir model for che
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To avoid the saturation area, we can constrain the product KC by :
| KC*[max = Rsup;;(KC")ij) < w

This constraint is not so easy to implement, so we relax it by :
I C fmax < | 1K max|C* fmax < o
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Blind Source Separation
Algorithm

Definition of €2
To avoid the saturation area, we can constrain the product KC by :
|KC funax = Rsup,; (KCY)sy) < w

This constraint is not so easy to implement, so we relax it by :
I C fmax < | 1K max|C* fmax < o

Algorithm
Cost function: T(K,C)=|Y -2(K,C)|r
Alternating procedure

0 Initialize C
1 Estimate K from the sub-problem: arg min T(K,C)

K>0, | K |max< o

2 Estimate C from the sub-problem: arg min T(K,C)

C=0, |Cllmax < g

3 Repeat from step 1 until convergence

angmuir model for chi



Simulation results

tion setti
R VOCs 5/10/15
N experiments 100
P sensors 100

Data are simulated with an
additional gaussian noise:
Y = Z(K,C) + € with

€; ~ N(0,00)

The noise is progressively intensified
by decreasing the following Signal
to Noise Ratio (SNR):

SNR = 20log(Z+) with o5 =

Y3
PN

Correlation

0.75-

o
@
3

0.25-

Correlation for
—c

— K

Nb of analytes
5

W 0 2 10 0
SNR (dB)




Conclusion

We have

@ formulated a non-linear mixture model for a type of chemical
sensors used in an electronic nose.

@ proposed an algorithm in order to estimate blindly the individual
outputs and the concentrations.

® assessed the performance of the algorithm in the presence of
noise.

Further work will
@ include experiments with real data.
@ relax the assumption that we know the masses.

® exploit time information.

Comon under the Langmuir model for che



References

(1l

(2]

(3]

(4]

(5]

Krishna Persaud and George Dodd.

Analysis of discrimination mechanisms in the mammalian olfactory system using a
model nose.

Nature, 299(5881):352-355, 1982.

A. Halperin, A. Buhot, and E. B. Zhulina.

On the hybridization isotherms of DNA microarrays: the Langmuir model and its
extensions.

Journal of Physics: Condensed Matter, 18(18):5463, 2006.

Esa Stenberg, Bjérn Persson, Hakan Roos, and Csaba Urbaniczky.
Quantitative determination of surface concentration of protein with surface
plasmon resonance using radiolabeled proteins.

Journal of colloid and interface science, 143(2):513-526, 1991.

Emmanuel Maillart.

Imagerie par résonance des plasmons de surface pour l’analyse simultanée de
multiples interactions biomoléculaires en temps réel.

PhD thesis, Université Paris Sud-Paris XI, 2004.

K. Huang, N. D. Sidiropoulos, and A. Swami.

Non-Negative Matrix Factorization Revisited: Uniqueness and Algorithm for
Symmetric Decomposition.

IEEE Transactions on Signal Processing, 62(1):211-224, January 2014.




Acknowledgements

The authors would like to acknowledge Cyril Herrier and Thierry
Livache from the start-up Aryballe Technologies and Arnaud Buhot
from the CEA Inac for their highly valuable help in the understanding
of the proposed model.

inder the Langmuir mod.



ARYBALLE

Technologies

Thank you ! Questions 7



	Electronic nose
	Principle
	Source Separation issue

	Physico-chemical mixture model
	Chemical model
	Optical model
	Global model

	Blind Source Separation
	Theoretical results
	Algorithm

	Simulation results
	Conclusion

