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Motivation: Networking The Oceans

Potential impacts of underwater acoustic (UW-A) networking for
sensor networks and autonomous systems are significant.

(a) Tsunami (b) Toxic algae bloom  (c¢) Autonomous

early-warning in Lake Erie which left = underwater vehicle
instrument deployment 500,000 without (AUV) for search and
in South China Seal drinking water in 20142  rescue, security, and

scienfic uses®

1Image Credit: Van.takacs, Wikimedia
Image Credit: NASA/NOAA
Image Credit: Bluefin Robotics
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Challenges of the UW-A Environment

UW-A presents a challenging dynamic environment;:
@ Significant path loss and propagation delay
o Time-varying multipath
o Large frequency and time spread

Spread spectrum signaling offers significant robustness over the
multipath UW-A channel. However, static spreading code length
limits achievable link data rate in favorable channel conditions.

Favorable Channel Conditions ‘ Poor Channel Conditions
Short Spreading Length Long Spreading Length
Maximize Data Rate Maintain Connectivity

This work: leverage the short-data record performance of
auxiliary-vector (AV) filtering, adaptively optimize code lengths.
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System Model

K multiplexed users transmit unit-energy information symbols
spreaded with a code sequence of length L to a common receiver over
a time-varying frequency-selective UW-A channel with M resolvable
paths. Received signal after downconversion and sampling

K—-1
r(i] = boli|Hoso + » _ bi[i]Hysy +j +n € CH (1)
k=1
o R = E{r[i]r[i{]7}: input autocorrelation matrix
@ bili] € A: k-th user’s information symbol from constellation .4
o Hj € Ctv*L (L, = L+ M — 1): multipath fading matrix
L
@ s € {:I:l/\/f} : binary antipodal spreading code of length L
e j € Clv: multipath-induced inter-symbol interference
e n € CI™: additive colored Gaussian ambient noise
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Ambient Noise Model

Sources of ambient underwater
acoustic noise:

@ Thermal Noise

o Turbulence

o Ship Traffic

o Wave Action

A good approximation noise PSD
in dBre pPa/Hz

Nava(f) =50 —18log(f)  (2)

Generated in simulation by
filtering white noise.

Adaptive Packetization
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Adaptive MVDR Filtering

Symbols recovered by applying a normalized linear filter
bo[i] = argmin|w{lr[i] — b‘Q
beA

o RAKE-matched filter (MF)

e Hoso 3
0 [Hosol|? )

o RAKE sample matrix inversion (SMI): an unbiased estimator of
the minimum variance distortionless receiver (MVDR)

wisMIl _ R_iHOSO . (@)
SgHgR_lHoso

With the estimated autocorrelation matrix R = + Zi:;l r[n]rf [n]
calculated by sample averaging over N >> L), signal snapshots.
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Short Data Record AV Filtering

Auxiliary-vector (AV) filter

wiaVIl W
W = THosol® outperforms SMI
implementation of the MVDR 0 —
filter for limited sample support. 25} | —5—sMI
| |
8 2 3
Algorithm 1 AV Filter Sequence Calculation g 15
Input: w M| R &
Output: {w(q), W), Wez), ... } g
SR
1: Initialization: v = wiM'! L W) = o2 z
2 ford=1,2 ... do &
&
3 ga= (I Hsz)RW({i 1) &0
. _ glRwuy 5
4 g =  FRe.
50 Wd) = W(d—1) — [d8d 10
6: end for 10° 10t 102 103 10*

Data Record Size As Multiples of (L4+M-1) Samples
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Code Length Adaptation

Goal: adaptively optimize the code
length L of the user of interest to
maximize link data rate, while
satisfying a pre-defined BER
constraint

maxiLmize R(L)

Subject to BE'R(L) S BER’maz ) 50 100 150 Tuii?(s) 250 300 350 400
Lmin < L < Lmaw
(5) Simulations use time-varying
with R(L) = 1/(LT,) for chip channel realizations generated by
duration T.. an UW-A channel simulator.*
4

http://millitsa.coe.neu.edu/?q=research/simulator
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Feedback Considerations

Frame duration Ty = L - N - T,

’ such that round-trip time (RTT)
2 of a data frame and its associated
feedback frame does not exceed
the channel coherence time

sy RTT = 2Tprop + Tf + Tfeedback~

8 Xex

Depth (m)

For a transmitter-receiver distance
of d meters and ¢ &~ 1500 m/s, the

0 100 200 300 400 500 600

Range (m) speed of sound in water
Parameter Value 2
Bandwidth 50 kHz Ty <Teop — —. (6)
Center Frequency | 120 kHz ¢
Coherence Time 1.0s
Frame Duration 200 ms

9/12
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Performance Evaluation

23 BB BB P B B oo o P

B DB DB B Db

Time (s)

Bit Error Rate

Proposed Adaptive sa+s+ Fixed (L=24)]

AT M T

0 50 100 150 200 250 300 350 400
Time (s)

107 [—f—av. =8
—&— AV, L=16
—P—av, =322
- SMIL L=8
& SMIL L=16
104 F[prosmi, =32

Data Rate (kbps)

85 90 95
Transmit Symbol Energy (4B re pPa)

@ Target BER of 10™* which, for our noise and channel conditions, will
be satisfied with a pre-detection SINR of 10 dB.

@ Estimate channel gain and select the shortest code length that satisfies
target SINR of 10 dB plus a small margin (1.5 dB) for uncertainty.

@ Consider a discrete set of code lengths
L € {8,9,10,11,12,16, 20, 24, 28,32} and compare to static (L = 24).

10 /12
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In Summary

We run simulations of 4,000 frames and average results over a dozen
independent channel realizations. Although the average BER of both
the static and adaptive schemes satisfy (within 10%) the target BER
of 1074, the static scheme achieves an average throughput of

1.54 kbps and the adaptive scheme an average of 2.01 kbps, an
improvement of 30.5%.

In summary
@ Short data record AV filtering outperforms SMI and MF.
o Leverage AV filtering performance benefits to implement
adaptive spreading code length optimization with short frames.

e Simulations® show adaptive spreading code length optimization
can maximize data rate under pre-defined BER constraints in
time varying UW-A channels.

5Code Available: https://github.com/adamgann/av-uwa



Introduction
00

Adaptive Filtering
0000

Than

07 o X 10 20"
Data Record Size As Multiples of (L+M-1) Saniples

RSN NN NN

*
i S

Adaptive Packetization
[e]e]e)

k You.

[ tastantancons =
o 3 o e 3o aw
Time (5)

s w0 s 30 0 330 a0

0
Time (s)

Summary
oe

12 /12



	Introduction
	Adaptive Filtering
	Adaptive Packetization
	Summary

