

Sine-based EB-ESPRIT for source localization

2018. 07. 09. Sheffield, United Kingdom

Byeongho Jo, Jung-Woo Choi (byeongho@kaist.ac.kr, jwoo@kaist.ac.kr)

School of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST) South Korea

Objective

Direction-of-arrival estimation using spherical microphone array

Objective	Background	Problem Statement	Proposed method	Performance validation
-----------	------------	----------------------	--------------------	---------------------------

Objective

Direction-of-Arrival (DOA) estimation

• Measurement pressure data \rightarrow incoming directions of sources

Spherical microphone array

- Measure 3-D sound field
- Processing in spherical harmonic domain

Objective

Subspace-based method

- Using orthogonality between signal and noise subspaces
- ESPRIT: Parametric estimation (without grid-search)

EB-ESPRIT (Eigenbeam – Estimation of Signal Parameters via Rotational Invariance Techniques)

- Processing in spherical harmonic domain
- Using a recurrence relation of spherical harmonics

Practical problem

• Singularity of tangent function (directional parameter of EB-ESPRIT)

Objective: solve the practical problem of EB-ESPRIT

Background

Signal processing in spherical harmonic domain

Objective	Background	Problem Statement	Proposed method	Performance validation
-----------	------------	----------------------	--------------------	---------------------------

Background | Spherical Fourier transform

Spherical Fourier transform (SFT)

Background | SFT of multiple plane waves

Signal processing in spherical harmonic domain

 $\approx \frac{1}{J} \sum_{j=1}^{J} \left(\mathbf{a}^{(j)} \mathbf{a}^{(j)H} \right)$ J: number of observations X 000…0

3. Construction of covariance matrix (*: complex conjugate)

8

Signal processing in spherical harmonic domain

Problem Statement

Singularity problem of EB-ESPRIT

Objective	Background	Problem Statement	Proposed method	Performance validation

EB-ESPRIT | Extract the directional coefficients

Recurrence relation of spherical harmonics

EB-ESPRIT | Procedure of EB-ESPRIT

EB-ESPRIT | Procedure of EB-ESPRIT

EB-ESPRIT: DOA estimation in a parametric manner

EB-ESPRIT | Practical problem of EB-ESPRIT

Directional parameter for elevation: tangent function (singularity)

$$2mY_n^m (\Omega_s)^* + \Lambda^+ Y_n^{m+1} (\Omega_s)^* \tan \theta_s e^{i\phi_s} + \Lambda^- Y_n^{m-1} (\Omega_s)^* \tan \theta_s e^{-i\phi_s} = 0$$

$$\Phi_s \qquad \Phi_s^*$$

 $\theta = \tan^{-1}(|\Phi_s|)$

Singularity problem

- Singularity of tangent function near $\theta \cong \pi/2$
- Cannot estimate the DOAs when the sources near <u>the equator</u>

KAIST

How do we overcome the singularity problem?

Prior works to overcome singularity problem

[Sun et al, ICASSP 2011]

• Rotation of the reference coordinate when the robustness measure is bad

→ Additional computations!

[Huang et al, IEEE T-ASLP 2017]

• <u>Two-stage</u> decoupled approach (TSDA) :

unitary spherical ESPRIT (U-SHESPRIT) $\rightarrow \underline{\theta}$ (cosine function) unitary spherical root-MUSIC (U-SHRMUSIC) $\rightarrow \phi$

ightarrow find elevations and azimuth angles separately

 \rightarrow 2nd order-reduction of spherical harmonic coefficients (θ)

Prior works to overcome singularity problem

[Sun et al, ICASSP 2011]

• Rotation of the reference coordinate when the robustness measure is bad

→ Additional computations!

[Huang et al, IEEE T-ASLP 2017]

• <u>Two-stage</u> decoupled approach (TSDA) :

unitary spherical ESPRIT (U-SHESPRIT) $\rightarrow \underline{\theta}$ (cosine function) unitary spherical root-MUSIC (U-SHRMUSIC) $\rightarrow \phi$

ightarrow find elevations and azimuth angles separately

How do we overcome the singularity problem without artifacts?

Proposed method

Sine-based EB-ESPRIT

Objective	Background	Problem Statement	Proposed method	Performance validation

Proposed method | sine-based recurrence relations

$$2mY_{n}^{m}(\Omega_{s})^{*} + w_{nm}^{+}Y_{n-1}^{m+1}(\Omega_{s})^{*}\sin\theta_{s}e^{i\phi_{s}} + w_{nm}^{-}Y_{n-1}^{m-1}(\Omega_{s})^{*}\sin\theta_{s}e^{-i\phi_{s}} = 0$$

$$2mY_{n-1}^{m}(\Omega_{s})^{*} + v_{nm}^{+}Y_{n}^{m+1}(\Omega_{s})^{*}\sin\theta_{s}e^{i\phi_{s}} + v_{nm}^{-}Y_{n}^{m-1}(\Omega_{s})^{*}\sin\theta_{s}e^{-i\phi_{s}} = 0$$

$$w_{nm}^{\pm} = \sqrt{(2n+1)(n \mp m)(n \mp m-1)/(2n-1)}$$
$$v_{nm}^{\pm} = \sqrt{(2n-1)(n \pm m)(n \pm m+1)/(2n+1)}$$

Estimate the elevation using the arcsine function

Proposed method | sine-based recurrence relations

$$2mY_{n}^{m}(\Omega_{s})^{*} + w_{nm}^{+}Y_{n-1}^{m+1}(\Omega_{s})^{*}\sin\theta_{s}e^{i\phi_{s}} + w_{nm}^{-}Y_{n-1}^{m-1}(\Omega_{s})^{*}\sin\theta_{s}e^{-i\phi_{s}} = 0$$

$$2mY_{n-1}^{m}(\Omega_{s})^{*} + v_{nm}^{+}Y_{n}^{m+1}(\Omega_{s})^{*}\sin\theta_{s}e^{i\phi_{s}} + v_{nm}^{-}Y_{n}^{m-1}(\Omega_{s})^{*}\sin\theta_{s}e^{-i\phi_{s}} = 0$$

$$w_{nm}^{\pm} = \sqrt{(2n+1)(n \mp m)(n \mp m-1)/(2n-1)}$$
$$v_{nm}^{\pm} = \sqrt{(2n-1)(n \pm m)(n \pm m+1)/(2n+1)}$$

KAIST

Estimate the elevation using the arcsine function

 $2mY_{n}^{m}(\Omega_{s})^{*} + w_{nm}^{*}Y_{n-1}^{m+1}(\Omega_{s})^{*}\sin\theta_{s}e^{i\phi_{s}} + w_{nm}^{-}Y_{n-1}^{m-1}(\Omega_{s})^{*}\sin\theta_{s}e^{-i\phi_{s}} = 0 \quad \Rightarrow \text{Type 1}$

 $2mY_{n}^{m}(\Omega_{s})^{*} + w_{nm}^{+}Y_{n-1}^{m+1}(\Omega_{s})^{*}\sin\theta_{s}e^{i\phi_{s}} + w_{nm}^{-}Y_{n-1}^{m-1}(\Omega_{s})^{*}\sin\theta_{s}e^{-i\phi_{s}} = 0 \quad \Rightarrow \text{Type 1}$ $2mY_{n-1}^{m}(\Omega_{s})^{*} + v_{nm}^{+}Y_{n}^{m+1}(\Omega_{s})^{*}\sin\theta_{s}e^{i\phi_{s}} + v_{nm}^{-}Y_{n}^{m-1}(\Omega_{s})^{*}\sin\theta_{s}e^{-i\phi_{s}} = 0 \quad \Rightarrow \text{Type 2}$

Total number of independent equations:

$$2N^2 + N = 14 + 9 - 2 = 21$$

Two types of recurrence relations of spherical harmonics $2mY_{n}^{m}(\Omega_{s})^{*} + w_{nm}^{*}Y_{n-1}^{m+1}(\Omega_{s})^{*}\sin\theta_{s}e^{i\phi_{s}} + w_{nm}^{-}Y_{n-1}^{m-1}(\Omega_{s})^{*}\sin\theta_{s}e^{-i\phi_{s}} = 0 \quad \Rightarrow \text{Type 1}$ $2mY_{n-1}^{m}(\Omega_{s})^{*} + v_{nm}^{+}Y_{n}^{m+1}(\Omega_{s})^{*}\sin\theta_{s}e^{i\phi_{s}} + v_{nm}^{-}Y_{n}^{m-1}(\Omega_{s})^{*}\sin\theta_{s}e^{-i\phi_{s}} = 0 \quad \Rightarrow \text{Type 2}$

Total number of independent equations.

of independent equations \rightarrow # of detectable sources

Procedure of DOA estimation

Procedure of sine-based EB-ESPRIT

Procedure of sine-based EB-ESPRIT

Stacking
equations
$$2[\mathbf{M} \ \mathbf{M}] \begin{bmatrix} \hat{\mathbf{U}}^{(0,0)} \\ \hat{\mathbf{U}}^{(-1,0)} \end{bmatrix} + \begin{bmatrix} \mathbf{W}^+ \hat{\mathbf{U}}^{(-1,+1)} \ \mathbf{W}^- \hat{\mathbf{U}}^{(0,-1)} \end{bmatrix} \begin{bmatrix} \Psi_{\sin} \\ \Psi_{\sin}^+ \end{bmatrix} = 0$$

Least squared solution $\underline{\Psi}_{\sin} = -2\mathbf{E}^{\dagger} \underline{\mathbf{M}} \underline{\mathbf{U}}$
Relationship between $\Psi_{\sin} = \mathbf{T}^{-1} \Phi_{\sin} \mathbf{T}$ Eigen v
Matrix containing Φ_{\sin}
 $\hat{\theta}_{s}^{(d)} = \underline{\sin^{-1}} \Phi_{\sin}^{(d)} \end{bmatrix}, \hat{\phi}_{s}^{(d)}$

Procedure of sine-based EB-ESPRIT

KAIST

Performance validation is needed

Performance validation

Simulation

Simulation for performance validation

Simulation configuration

- Number of microphones : 32 spherical t-design sampling, radius of sphere = 7.5 cm
- Maximum harmonics order: N = 3
- Target frequency: 1,456 Hz (kr = 2)
- Self-microphone noise (incoherent to signal)
- Compute covariance matrix: averaging 300 independent snapshots

Error measure of DOA estimation

• Estimation error

$$\boldsymbol{\varepsilon}^{(d)} = \left| \boldsymbol{\Omega}_{s}^{(d)} - \hat{\boldsymbol{\Omega}}_{s}^{(d)} \right|, \quad \Delta \boldsymbol{\theta}^{(d)} = \left| \boldsymbol{\theta}_{s}^{(d)} - \hat{\boldsymbol{\theta}}_{s}^{(d)} \right|, \quad \Delta \boldsymbol{\phi}^{(d)} = \left| \boldsymbol{\phi}_{s}^{(d)} - \hat{\boldsymbol{\phi}}_{s}^{(d)} \right|$$

- Signal-to-Noise Ratio (SNR) SNR (dB) = $10\log_{10} (D\sigma_s^2 / L\sigma_n^2)$, σ_s^2, σ_n^2 : power of signals and noises
- Number of detectable sources

Validation for two incoherent sources $\left(\theta_s^{(1)},\phi_s^{(1)}\right) = \left(20^\circ,45^\circ\right), \left(\theta_s^{(2)},\phi_s^{(2)}\right) = \left(46^\circ,68^\circ\right)$

RMSE = $\sqrt{\frac{1}{JD} \sum_{j=1}^{J} \sum_{d=1}^{D} \left| \varepsilon_{j}^{(d)} \right|^{2}}$, J = 400 independent trials

Estimation performance is comparable to EB-ESPRIT

Simulation | RMSEs with various elevation angles

Validate the proposed method by comparing the RMSEs with various elevation angles and SNRs

CAIST

Simulation | RMSEs with various elevation angles

Performance degradation in elevation

Sine function slowly changes near $\theta_s = 90^\circ$

Simulation | RMSEs with various elevation angles

Performance degradation in elevation

Sine function slowly changes near $\theta_s = 90^\circ$

Despite performance degradation in elevation, a reasonable performance with error under 2°

Simulation | Robustness : 2-norm condition number

Robustness measure: 2-norm condition number

 $\Psi = -2\mathbf{E}^{\dagger}\mathbf{M}\mathbf{U} \longrightarrow \mathbf{CN}_{2}(\mathbf{E}) = \left\|\mathbf{E}\right\|_{2} \cdot \left\|(\mathbf{E}^{H}\mathbf{E})^{-1}\mathbf{E}^{H}\right\|_{2}$

Overcome the singularity problem

Simulation | Number of detectable sources

RMSE variations with respect to the number of sources (D) and maximum order (N)

 $D_{\text{max}}(\text{Proposed}) = \lfloor N^2 + N/2 \rfloor > D_{\text{max}}(\text{EB-ESRPIT}) = \lfloor N^2/2 \rfloor$

Conclusion

20

Sine-based EB-ESPRIT utilizes two recurrence relations of spherical harmonics which has sine-based directional parameters

- Can estimate the DOAs near the equator without singularity
- No need for additional coordinate rotation
- Can estimate elevation and azimuth at once

More number of detectable sources than conventional EB-ESPRIT

Increase of the number of independent equations
 → can estimate more number of sources simultaneously

Limitation

• Performance degradation in elevation near the equator due to the slow rate of change of sine function

Thank you Byeongho Jo, KAIST (byeongho@kaist.ac.kr)

References

- [Boaz, 2015]: B. Rafaely, Fundamentals of Spherical Array Processing. NewYork, NY, USA: Springer, 2015.
- [Sun et al, ICASSP 2011]: Sun, H., Teutsch, H., Mabande, E., and Kellermann, W. Robust localization of multiple sources in reverberant environments using EB-ESPRIT with spherical microphone arrays. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on (pp. 117–120), 2011.
- [Huang et al, IEEE T-ASLP 2017]: Huang, Q., Zhang, L., and Fang, Y. Two-stage decoupled DOA estimation based on real spherical harmonics for spherical arrays. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(11), 2045–2058, 2017.