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Introduction

Developing real-time hyperspectral image unmixing methods for
industrial applications for controlling and sorting pieces of wood.

→ On-line Non-negative Matrix Factorization (NMF):

X≈SA.

Sequentially updating the parameters S and A as the size of the
data matrix X increases.

→ On-line MVS-NMF (Minimum Volume Simplex-NMF)
[Nus et al., SSP ’18 ].
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Introduction
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• The weighting coefficient α (0 ≤α≤ 1) adds some tracking
capacity to the algorithm.

• The endmembers vary only slightly between consecutive

samples i.e. S̃
(k+1)

≈ S̃
(k)

[Bucak and Gunsel, 2009].

→ Estimation of S and A: minimizing the cost function using a
gradient descent technique.
→ The strength of the MVS constraint is controlled by the
hyperparameter µ; the main goal is to provide a method to
determine it automatically.
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Some classical approaches for regularization parameter

estimation

• The generalized cross validation method [Golub et al., 1979].
As the NMF problem is bilinear, it is not applicable.

• The L-curve [Hansen, 1992].
→ The optimal value of the hyperparameter: maximum
curvature of the L-curve.
→ Multi-objective optimization [Kaufman, 1997].
→ Non-convex and the maximum curvature is not guaranteed
to be unique.

• [Belge et al., 2002] proposed the Minimum Distance Criterion
(MDC) applied to the L-curve (bi-objective case).
→ Limiting the range of the hyperparameter.

• To overcome these two main drawbacks: MDC on response
curve (bi-objective case) defined as the linear plot of
regularization cost versus the data fitting [Song et al., 2016].
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Response curve

Reformulate the MVS-NMF algorithm as a bi-objective problem:

• Hyperspectral image (slices X̃
(k)

, k = 1, ...,K ), used to learn the
value of µ.

• The value of α and the endmembers number are fixed.

• S(K )
µ and A(K )

µ denote the estimated endmembers and
abundances for a given value of µ.
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Response curve

Difficulties of the approach:

• NMF problems (including MVS-NMF) are bilinear and thus
non-convex.

• The obtained solution depends on the initial values of the
endmembers and abundances.

What is the shape of a response curve? What is the variability of
the response curves for different initial values?
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Shape of response curve on a simulated image

• Simulated hyperspectral image consisting in the non-negative
mixture of three endmembers, not varying over time.

• None of the three endmembers has any zero value.
→ Decomposition NMF non-unique.

• The three abundance maps are randomly drawn from a
continuous uniform distribution on the interval [0,1].

• The pure pixel condition is approximately fulfilled.

• Noise was added up to have an SN R = 26dB .

• r = 3 and α= 0.99.

• 44 values of µ ∈ [0.0001 0.0028].
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Shape of response curve on a simulated image
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→ The noise is right shifting the response curve by a value which
increases with the noise level.
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Shape of response curve on a simulated image
Noisy case
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(d) D 6⊂S (µ= 0.002)
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(e) D ≈S (µ= 0.001)
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Estimated endmembers for different values of µ
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Influence of the initial conditions
Response curves obtained for 100 different initial values drawn
randomly from uniform distribution on the interval [0,1].
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→ Most of the response curves are very similar, but some are
deviating from the "mean response curve".
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Three strategies

Estimation of the optimal value of µ. Three strategies are
considered:

• MDC to the Pareto Front estimated from the set of response
curves.

• MDC to the average response curve to assess how the
variability induced by the different initialization is affecting the
result.

• MDC to a single realization of the response curve.
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Pareto Front

• The definition of the Pareto front relies on the notion of
domination defined in [Deb, 2001].

• Non-dominated or Pareto optimal solution: if all other
solution in the feasible set has a higher value in at least one of
the objectives Ji , with i ∈ 1,2.

• The image of all the non-dominated solutions is called Pareto
Front.

The shape of the Pareto front represents the set of the best
achievable tradeoffs between conflicting objectives.
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Minimum Distance Criterion

• The ideal point I : the point whose coordinates are the
minima of the two objective functions.

• The optimal point M : the point having the minimum
distance to this ideal point.
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Results on simulated hyperspectral image
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• µ= 0.0024.

• Non-uniqueness.

• Pareto Front: µ= 0.00095.
• Average: µ= 0.0011.
• Single realization: values of µ between 0.001 and 0.0015.
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Results on real hyperspectral image

• Single realization strategy.
• Initialization warm start.
• 27 values of µ ∈ [0.001 0.1].
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• Value of µ estimated by the MDC: 0.03.
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Results on real hyperspectral image

100 200 300

50

100

150

(m) Abundance 1

100 200 300

50

100

150

(n) Abundance 2

100 200 300

50

100

150

(o) Abundance 3

1000 1200 1400 1600

Wavelength (nm)

0.04

0.05

0.06

0.07

0.08

Endmember 1

Endmember 2

Endmember 3

(p) Estimated endmembers

0 0.005 0.01 0.015 0.02 0.025
0

1

2

3

4

5
×10

-3

Estimated simplex

Data

(q) Estimated simplex
21/28

Ludivine NUS, Sebastian MIRON, David BRIE CRAN



Introduction Response curve for the on-line Minimum Volume Simplex-NMF Hyperparameter estimation Conclusions and

Limits of the approach for a real hyperspectral image

• Same wood species: oak.

• From one sample to another: the extracted endmembers are
very similar and therefore highly correlated.

• Having a "good" initialization: endmembers from an upstream
learning.

• Random initialization is complicated: the algorithm converges
slowly.
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Conclusions:

• Estimation of the regularization hyperparameter for the
on-line MVS-NMF.

• Three different MDC-based strategies: all yielding similar
results for a simulated image.

• The single realization response curve approach is the most
attractive since it presents the lowest computational cost.

• Validation on a real image using a single realization.
• Possibility to learn the regularization parameter on-line

(required for industrial applications).

Perspectives:

• Other volume constraints such as the minimum distance
between endmembers. Easier to implement and less
sensitive.

• Prove the convexity of response curve that guarantees the
uniqueness of the MDC.
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