Gridless Sound Field Decomposition Based on Reciprocity Gap Functional in Spherical Harmonic Domain Yuhta Takida, Shoichi Koyama, Natsuki Ueno and Hiroshi Saruwatari (The University of Tokyo) **Problem Statement** Abstract **Sound field decomposition Sound field decomposition** Goal is to interpolate and reconstruct sound field inside region including Proposed (w/o grid) Sparse sound field decomposition sources (ill-posed problem!) Sound field should be decomposed into fundamental solutions of Grid point _ Helmholtz eq., i.e., point sources Sound source **Current method**: Sparse sound field decomposition^[1] Spherical - Sparse decomposition by discretizing possible source region into grid microphone array points Source distribution $Q(\mathbf{r}, k)$ inside Ω is approximated as a linear Discrete set of point-source dictionary causes off-grid prblem combination of J point sources High computational cost and large memory are required for large set of grid points $Q(\mathbf{r},k) \approx \sum c_j \delta(\mathbf{r} - \mathbf{r}_j)$ $\bigvee u(\mathbf{r},k) \approx \sum c_j(k) G(\mathbf{r} \mid \mathbf{r}_j,k)$

Proposed method

- Reciprocity gap functional (RGF) is applied in spherical harmonic
- Spatial convolution of source distribution $\check{Q}(\cdot)$

- domain
- No more discretization by grids
- Closed-form solution (extremely low computational cost)

with three-dimensional free-field Green's function $G(\cdot)$

Estimating c_j and \mathbf{r}_j makes it possible to reconstruct $u(\cdot)$

Sound Field Decomposition Based on RGF

Concept of RGF

- Test function $w(\cdot)$ and RGF $R(\cdot)$ for $w(\cdot)$ is defined as

 $w(\cdot) \in \mathcal{H}_k := \{ w \in \mathcal{H}^1(\Omega) | (\nabla^2 + k^2)w = 0 \}$

$$R(w) := \int_{\Omega} w(\mathbf{r}) Q(\mathbf{r}) d\mathbf{r}$$

- By applying point source assumption and Green's theorem to ${\cal R}(w)$, the following equation holds

$$\sum_{j=1}^{J} c_{j} w(\mathbf{r}_{j}) = \int_{\partial \Omega} \left(u(\mathbf{r}) \frac{\partial w(\mathbf{r})}{\partial \mathbf{n}} - w(\mathbf{r}) \frac{\partial u(\mathbf{r})}{\partial \mathbf{n}} \right) dS \quad \cdots (*)$$

The parameter of sound sources J, \mathbf{r}_j and c_j can be estimated from pressure and velocity values on $\partial\Omega$.

Localization based on RGF

- $w(\cdot)$ is chosen as $w_n(\mathbf{r}) = (x + iy)^n e^{-ikz}$ [2]
- Calculate s_n (Right-hand side of Eq. (*)) from microphone observations
- Compose Hankel matrices

$$\mathbf{H} = \begin{bmatrix} s_1 & s_2 & \cdots & s'_J \\ s_2 & s_3 & \cdots & s_{J'+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_{J'} & s_{J'+1} & \cdots & s_{2J'-1} \end{bmatrix}, \ \mathbf{H}_l = \begin{bmatrix} s_{l+1} & s_{l+2} & \cdots & s_{l+J'} \\ s_{l+2} & s_{l+3} & \cdots & s_{l+J'+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_{l+J'} & s_{l+J'+1} & \cdots & s_{l+2J'-1} \end{bmatrix}$$

Determine # of sources J from the eigenvalue of \mathbf{H}

Estimate the source locations on x-y plane from the eigenvalue of $\mathbf{H}_1\mathbf{H}_0^{-1}$

A large number of microphone pairs need to be arranged uniformly on $\partial \Omega$ to calculate surface integral.

RGF in Spherical Harmonic Domain

RGF in spherical harmonic domain

Surface integral in spherical harmonic domain

- Pressure on $\partial \Omega$ in spherical harmonic domain.

$$u(\mathbf{r}) = \sum_{\nu=0}^{\infty} \sum_{\mu=-\nu}^{\nu} \beta_{\nu\mu} h_{\nu}(kr) Y_{\nu\mu}(\theta,\phi)$$

- Spherical harmonic expansion of $w_n(\cdot)$ is analytically obtained

$$w_{\nu\mu}^{(n)} = \frac{1}{j_{\nu}(kr)} \int_{0}^{\pi} \int_{0}^{2\pi} w_{\nu\mu}^{(n)} Y_{\nu\mu}^{*}(\theta,\phi) \sin\theta d\theta d\phi$$

$$=\frac{i^{n-\nu}}{k^n}\sqrt{\frac{4\pi(2\nu+1)(\nu+n)!}{(\nu-n)!}}\delta_{\mu,n}$$

$$s_{n} = \int_{\partial\Omega} \left(u(\mathbf{r}) \frac{\partial w(\mathbf{r})}{\partial \mathbf{n}} - w(\mathbf{r}) \frac{\partial u(\mathbf{r})}{\partial \mathbf{n}} \right) dS$$
$$= \frac{i}{k} \sum_{\nu=0}^{\infty} \sum_{\mu=-\nu}^{\nu} (-1)^{\mu+1} w_{\nu-u}^{(n)} \beta_{\nu\mu}$$

- Two test functions are also used to determine the source location in a 3D space: $w'_n(\mathbf{r}) := w_n(y, z, x)$, $w''_n(\mathbf{r}) := w_n(z, x, y)$
- Analytical spherical harmonic expansion of function $w_n'(\mathbf{r})$, $w_n''(\mathbf{r})$ are obtained from coefficients $w_{\nu\mu}^{(n)}$ and Wigner-D matrix

Experiments

0.1

-0.1

-0.2

-10

-15

-20

Simulation conditions

- Comparing proposed method (Proposed) with
 - <u>Sparse</u>: sparse sound field decomposition^[1]
 - (interval of grid points d of 0.10, 0.15, and 0.20 m)
 - <u>EN</u>: the direct application of RGF^[2]
- Microphone array (SNR: 40dB)
 - 24 second-order spherical microphone arrays consisting of 9 microphones for <u>Proposed</u> and <u>Sparse</u>
 - 108 microphone pairs for <u>EN</u>

RMSE_{SL} and SDR are plotted against frequency

- Evaluation criteria:
 - Root-mean-square error of source location (RMSE_{SL})
 - Signal-to-distortion ratio (SDR)

$$\text{RMSE}_{\text{SL}} = \sqrt{\frac{1}{J} \sum_{j=1}^{J} \|\mathbf{r}_{j,\text{true}} - \mathbf{r}_{j}\|_{2}^{2}}$$

$$SDR = 10 \log_{10} \frac{\int_{\Omega} |u_{\rm P,true}(\mathbf{r})|^2 d\mathbf{r}}{C}$$

Computational time (avg.)

- **Proposed**: 1.97×10^{-4} s
- Sparse
 - d=0.10 m: 1.64×10^2 s
 - d=0.15 m: 1.88×10^{1} s
 - d=0.20 m: 5.80

Sound field reconstruction: 400 Hz

High source localization and sound field reconstruction accuracies are achieved at low frequencies by using proposed method

[1] S. Koyama, S. Shimauchi, and H. Ohmuro, "Sparse sound field representation in recording and reproduction for reducing spatial aliasing artifacts", in *Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),* Florence, May 2014, pp. 4443—4447.

[2] A. El Badia and T. Nara, "An inverse source problem for Helmholtz's equation from the Cauchy data with a single wave number," *Inverse Prob.*, vol. 27, no. 105001, 2011.