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1. Introduction: Beam Selection Problem
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• Which beam should be selected in order to capture the highest signal power?
• How to do the beam selection in the most efficient way in terms of training time? 

MIMO 
Receiver 

using 
Beamforming

… … AoAφ

1i =

i M=

• Why mm-Wave?
• higher carrier frequencies frees up higher bandwidth for data transmission

• Why beamforming?
• Directional transmission can counter significant path loss (∝ 𝑓𝑓2) due to high 

carrier freq.
• Beam selection problem:



2. System Model
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Received sequence under beam 𝑖𝑖 ∶

Training Sequence 𝑠𝑠[𝑛𝑛] with length 𝑁𝑁:

Correlated received sequence under Beam 𝑖𝑖 ∶

Since the discrimination between two beams, considering a single plane wave signal (one 
AoA) shows most essential features of our problem, we restrict the number of candidate 
beams to 𝑴𝑴 = 𝟐𝟐 and consider a single user scenario that uses correlated observations.

Assuming perfect sync.

Unknown variance

Unknown magnitude



3. Fixed Length Test
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Difference magnitude:

Sufficient statistic and Minimum Variance Unbiased Estimator (MVUE) for 𝐷𝐷: 

Deflection coefficient of �𝐷𝐷: 

Hypothesis Test: 

ˆif  0    Select  Beam 1 
ˆif  0    Select  Beam 2 

D

D

 > ⇒


< ⇒

Which beam should be selected in order to 
capture the highest signal power?

(1)

(2)



Fixed Length Test: Performance Criterion
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How to specify the performance?

Normalized average loss of signal magnitude:

(3)

Required deflection coeff. to achieve target performance ̅𝑙𝑙target:

Design Problem:
The receiver doesn't know the values corresponding to 

𝑟𝑟 and   (𝐴𝐴1−𝐴𝐴2)2

𝜎𝜎2
.



Fixed Length Test: Problems
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This can cause a mismatch:

Effectively achieved deflection coef. by the 
design based on 𝑁𝑁fix:

• Naively fixing the test length to some value 𝑁𝑁fix based on a certain assumed 
operating point can result in a strongly variable performance in practical scenarios. 

• Additionally, if 𝑁𝑁fix is conservatively set to a high value based on the worst still 
acceptable operating point, a lot of time spent will be wasted for detection of the 
best beam if the channel quality is better than expected.



4. Detection of a Unknown DC Level in WGN 
with Unknown Variance
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Consider the following hypothesis testing problem:

Question:
How can we detect the presence or absence of a nonzero DC level in zero mean WGN
where both the DC level and the noise variance are unknown?

Unknown variance

Unknown amplitude

• Noise variance under null hypothesis is not known.
• Neyman-Pearson approach can not find the proper threshold on the likelihood ratio to 

bound the probability of false alarm.
• Possible solution: replacing the unknown parameters in likelihood functions with their 

Maximum Likelihood Estimates (MLE) .



Generalized Likelihood Ratio
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Generalized Likelihood Ratio (GLR):

Sufficient Statistics or Generalized log Likelihood Ratio 
(GLLR):

MLE of 𝜎𝜎2 under : 

MLE of 𝐴𝐴 and 𝜎𝜎2 under : 

For large 𝑁𝑁 it has the following chi-squared distributions:

With non-centrality parameter (deflection coef.):

(4)



GLR Test
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Since the GLLR PDF under null hypothesis 
is fully known we can bound the false alarm 
probability by finding the proper threshold. 

Probability of false alarm:

Threshold on the GLLR:

Probability of misdetection:

(5)

,

𝑃𝑃MD is dependent on:
• number of observations
• SNR per observation



Probability of Misdetection using GLRT
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1. As 𝑁𝑁 increases, the 𝑃𝑃MD decreases exponentially
2. The rate of decrease depends strongly on 𝐴𝐴2/𝜎𝜎2

• How can we exploit this property for our beam selection problem?



Variable Length Parallel Binary Tests

TU Dresden Slide 12

• Consider the initial M-ary beam selection problem. 
• Separate observation sequences are available under each beam. 
• This time instead of comparing the estimates of the values 𝐴𝐴1, … ,𝐴𝐴𝑀𝑀

against each other, let us rather compare them separately to their 
absence.

Obviously, H0 is the wrong hypothesis under each beam.

Unknown variance:

Unknown magnitude:

Probability of correct 
binary decision under 
beam 𝑖𝑖 :

Same decision threshold 
under all beams:

Variable 𝑛𝑛

Now if at each 𝑛𝑛 we compare 𝛾𝛾𝑖𝑖(𝑛𝑛) to 𝛾𝛾𝑡𝑡𝑡: 

The beam that observes the stronger signal will cross the threshold earlier on average!

if

Parallel binary tests:



5. Sequential Competition Test for Beam 
Selection
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Sequential competition test: (6)

• The test terminates as soon as one of the stochastic trajectories 𝛾𝛾𝑖𝑖 𝑛𝑛 for 𝑖𝑖 =
1,⋯ ,𝑀𝑀 crosses the threshold, while the index of this trajectory indicates the selected 
beam. 

• Otherwise we continue by taking the next observation into account.
• The interpretation is that we let the beams compete to distinguish themselves from 

pure zero mean WGN noise with unknown variance, and the one which does it 
faster is the winning beam in the competition.



Sequential Competition Test: Comparison
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�𝑛𝑛 indicates the average number of observations used by sequential test

• Sequential test adaptively changes 
the number of observations with 
respect to operating point

• This makes the performance in 
terms of ̅𝑙𝑙 invariant to the 
operating point

• Furthermore, sequential test 
outperforms the ideally tuned fixed 
length test in lower SNR in terms 
of required number of observations 
to achieve the same performance 



6. Simulation: Beam Selection in Massive MIMO 
Systems
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AoA distributed uniformly 
in −900, 900

M=16 uniform linear array 
using Butler Matrix

𝑁𝑁𝑓𝑓𝑖𝑖𝑓𝑓 = 50

Total simulation runs: 104

𝛾𝛾th based on 𝑃𝑃FA = 10−3

Maximum available 
SNR = 𝐴𝐴max2 /𝜎𝜎2

• Sequential test adaptively reduces average test length as SNR grows
• This results in reduced delay due to training.
• The achievable speed up becomes even more interesting in systems using analogue or 

hybrid beamforming, where exhaustive search for beam selection can cause huge 
delays
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7. Concluding Remarks

• We proposed a novel sequential competition test based on GLR statistics to 
solve the composite beam selection problem. 

• Our sequential competition test shows adaptively w.r.t. the SNR operating 
point.

• It speeds up beam selection even when compared to an optimally designed 
fixed length test at lower SNR regime where it matters the most 

• These properties can be of interest in massive MIMO systems using hybrid 
beamforming as well as under conditions where the training time is limited due 
to small channel coherence time.
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9. References
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Thank You!



Chi-squared Distributions
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Sequential Competition Test: Visualized
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Sequential Competition Test: Performance over 𝑟𝑟
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