Adaptive Near-Field Imaging with Robotic Arrays

Belal Korany, Chitra Karanam, and Yasamin Mostofi **University of California Santa Barbara**

Email: {belalkorany, ckaranam, ymostofi}@ece.ucsb.edu

Imaging and Robotics

Why imaging?

- Surveillance
- Search and rescue
- Archaeology

Why robots?

- Emerging in many fields
- Can go to hazardous places
- Flexible positioning

Robotics in Imaging

How to benefit from robots in near-field imaging?

- Near-field beamforming $I(x) = \left| \sum R(q_r) e^{j\frac{2\pi}{\lambda} \left(\|x - p_t\|_2 + \|x - q_r\|_2 \right)} \right|$
- Difficult problem of considerable interest

Initial Sensing and Imaging

- No prior information: additive fusion of images from arrays with any configuration
- Example: four arrays at four different sides of workspace

Finding Object Regions

• Threshold the image using $\gamma_{\rm th}$, which can be determined using Neyman-Pearson criterion

Optimal Robotic Array (cont'd)

- **Requirement 2**: proximity ٠ to uncertain region
 - Objects farther from array outpowered by closer objects
 - $\mathbf{U}(x)$ preferred closer to array than O(x)

Finding Optimal Robotic Array

- Modeling the requirements: introduce a mask $\mathbf{P}(x) = \frac{1}{\psi(x)D(x)}$
- Objective: maximize P(x)U(x), minimize $\mathbf{P}(x)\mathbf{O}(x)$
- Consider arrays with any orientation on a circle enclosing the workspace

Narrowband Phased Array Imaging

Point Spread function has a high spread

- Multiview imaging improves imaging quality
- Multiplicative and additive fusion
- Relies on fixed array locations
- Robots can adaptively synthesize arrays to further improve imaging quality

Proposed Adaptive Imaging Algorithm

Binary object mask O(x)

Finding Most Uncertain Region

- Generate super-pixels for the remaining part of image
- Choose super-pixel whose mean intensity is closest to $E(I(x)|I(x) < \gamma_{\text{th}}, H_1)$
- Binary uncertainty mask $\mathbf{U}(x)$

Optimal Robotic Array

- Requirement 1: • **PSF Focus**
 - PSF is concentrated inside a cone
 - $\mathbf{U}(x)$ be inside the cone
 - O(x) be outside the cone

× × × × × × × × × ×

Finding Optimal Robotic Array (cont'd)

Optimization problem:

 $\{\theta^{i}\}$

$$\{,\phi^*\} = \operatorname*{argmax}_{\theta,\phi} \quad \sum_x \mathbf{P}_{\theta,\phi}(x)(\mathbf{U}(x) - \alpha \mathbf{O}(x))$$

subject to $0 \le \theta < 2\pi, \ 0 \le \phi < \pi$

Combine image obtained from optimized array with the previous image

Conclusions

- New framework for adaptive imaging using robotic arrays
- Proposed a method for detecting object areas and areas of high uncertainty
- Optimized the best array to image the uncertain region
- Simulations show efficacy of algorithm to remove uncertainty

Funded by NSF CCSS award # 1611254

(g) Marked image after 3 iterations

(h) Final image after 4 iterations

(c) Initial image with objects and uncertain region

(d) Image after first iteration

