Sufficiency Quantification for Seamless Text-Independent Speaker Enrollment

Gokcen Cilingir, Jonathan Huang, Mandar S Joshi, Narayan Biswal Intel Corporation

Enrollment 10 "hello cor 10 repeats of Short phone

> Suffici Phone Speec

Sufficiency quantification usages beyond seamless enrollment

- Improve UX for traditional text-independent SR enrollment
- Confidence modeling during detection/test.
- For multi-session enrollment and model fusion
- Proving metric utility over low quality data, spontaneous and noisy speech
- Proving metric utility over confidence modeling task

Experiment Results Utterance batches used in enrollment Utterance batches used in enrollment vs. EER of the resulting speaker vs. phoneme-richness score 5 6 7 8 9 10 11 12 13 14 1 Utterance batch amount used i Utterance batch amount used in enrollment enrollment **Success criteria (Pearson** correlation with EER) **Sufficiency metrics Phoneme-richness score** -0.99 **Speech duration** -0.79

Experiment Results

scenarios	Speech duration (seconds)	Phoneme- richness score	EER (%)
nputer" repeats	3.02	0.092	37.44
4 trigger words	13.32	0.120	30.12
ne-rich passage	12.33	0.152	23.96

ncy metrics	Success criteria (Pearson correlation with EER)	
ne-richness score	-0.96	
duration	-0.68	

Future Direction