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Motivation
• NOW

 Voice-enabled platforms are taking off

 Text-dependent speaker recognition is a technology that is 

already in the market in smart speakers

• FUTURE

 Speaker recognition (SR) on natural speech (Text-

independent speaker recognition)

• PROBLEM 

 Enrolling for SR with natural speech is NOT user-friendly

• SOLUTION

Seamless enrollment/adaptation
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*We used TIMIT. TIMIT contains 10 phoneme-rich sentence utterances from >650 speakers

Phoneme-richness quantification – offline process
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Sufficiency metrics

Success criteria (Pearson 

correlation with EER)

Phoneme-richness score -0.99

Speech duration -0.79

Enrollment scenarios

Speech 

duration 

(seconds)

Phoneme-

richness 

score 

EER 

(%)

10 "hello computer" repeats 3.02 0.092 37.44

10 repeats of 4 trigger words 13.32 0.120 30.12

Short phoneme-rich passage 12.33 0.152 23.96

Sufficiency metrics

Success criteria (Pearson 

correlation with EER)

Phoneme-richness score -0.96

Speech duration -0.68

Sufficiency quantification usages beyond 

seamless enrollment

• Improve UX for traditional text-independent SR enrollment

• Confidence modeling during detection/test. 

• For multi-session enrollment and model fusion

Future Direction

• Proving metric utility over low quality data, spontaneous and

noisy speech 

• Proving metric utility over confidence modeling task
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Sufficiency quantification

What criteria will you use to decide that you have enough data in 

the utterance pool to create a phrase-independent model of the 

speaker?

• Current enrollment model: Ask user to read a phoneme-rich 

passage, or a couple of such sentences

• Naïve approach: Use speech duration

• Our approach: Define a metric to quantify phoneme-richness
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Experiment Results

Experiment Results

Data set

• A proprietary dataset of 40 speakers.

• Each speaker uttered 180 short commands, 10 repeats of 20 

trigger words and a short phoneme-rich passage.

• 180 short commands are split into 25 batches, where each 

batch contained ~3 secs of speech content.

• 10 batches left out for testing. Equal error rate (EER) is as 

accuracy metric. 


