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Introduction

� Calibration of radio telescopes: essential for correcting systematic
errors (beam,ionosphere), removal of strong contaminating signals
(foregrounds): for high quality imaging.

gf (Jf ) =
∑

p,q

‖Vpqf − ApJfCpqf (AqJf )
H‖2

Vpqf : data, Cpqf : model, Jf : parameters, at frequency f .

� Terabytes of data observed, data split into thousands of frequency
channels, also stored at different locations in a network.

� Distributed calibration (and imaging): enable the use of many compute
agents to calibrate data faster and better.

� How can we measure the performance of distributed calibration?
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Uncalibrated Image

about 1× 1.5 degrees in the sky, no calibration

Data corrupted by systematic errors: ionosphere, beam, receiver.
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Calibrated Image

about 1× 1.5 degrees in the sky, after calibration

Is this good enough? depends on the science: most challenging is going
deep. Some science is based on things visible in the image, some sci-
ence is based on things invisible (unknown unknowns). Ground truth in radio

astronomy: there is no ground truth!
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Normal Calibration

...............

fPf1 f2

data

min gP (J)min g1(J) min g2(J)

Calibration

Data stored over a network of computers, divided into different subbands
(frequencies).
Each calibration operates independently on data at different frequencies
fi.
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Distributed Calibration

min g′
2
(J)

agents

min g′
1
(J) min g′

P
(J)

fusion center

.... ....................

f2f1 fP

data

fk

MPI

Each agent works on subsets of data. Information is passed via the fusion
center to reach consensus. A polynomial basis Bfi in frequency exploits
the natural behavior of systematic errors to improve calibration.
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Consensus Optimization

Distributed calibration minimizes augmented Lagrangian

L(Jf1 , . . . ,Z,Yf1 , . . .) =
∑

i

gfi(Jfi) + ‖YH
fi
(Jfi − BfiZ)‖+

ρ

2
‖Jfi − BfiZ‖

2.

Iterative optimization with n = 1, 2, . . .

� Locally optimize to find

(Jfi)
n+1 = arg min

J

Li (J, (Z)
n, (Yfi)

n)

� Globally find average (closed form solution)

(Z)n+1 = arg min
Z

∑

i

Li

(
(Jfi)

n+1,Z, (Yfi)
n
)

� Locally update Lagrange multiplier

(Yfi)
n+1 = (Yfi)

n + ρ((Jfi)
n+1 − Bfi(Z)

n+1)

Topic of this talk: Performance analysis of distributed calibration.
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Performance Analysis of Calibration

Various ways exist:

� Cramer Rao lower bound : gives variance of solutions.

� Jacobian leverage : gives variance of residuals.

� Various hand-crafted simulations.

We follow a different approach:

� We need to study the residual (not the solutions), and need a simple
way.

� Signals hidden in the residual are weak, we are after their statistics.

� We study the probability density functions (PDF) of input (data) and
output (residual).

� Power spectra ∼ autocorrelation ∼ PDF.

� Inspired by optimal mass transport problems (Monge-Kantorovich).
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Basic Method

Let x be input (data) and y be the residual. Assumed model for input x

x = s(θ) + n

n model error, unmodelled signal, noise, ..
In calibration, parameters θ are estimated as

θ̂ = arg min
θ

f(x, θ)

Cost function based on noise model f(·, ·) e.g.,

f(x, θ)
△
= ‖x− s(θ)‖2

and other cost functions can be used here (for imaging, foreground
removal etc.).
Residual (where hidden signals remain)

y = x− s(θ̂)

x ∼ pX(x) and y ∼ pY (y) PDF of data and residual.
How are they related?
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PDF

Assume a bijective mapping T (·) that transforms data into the residual. All
operations on data (calibration, deconvolution, foreground removal) are
inside T (·).

y = T (x), pX(x) = |J | pY (T (x))

where

J =




∂y1

∂x1

∂y1

∂x2

. . . ∂y1

∂xD

∂y2

∂x1

∂y2

∂x2

. . . ∂y2

∂xD

...
...

...
...

∂yD

∂x1

∂yD

∂x2

. . . ∂yD

∂xD




and for the residual, this can be simplified as

J = ID +A, |J | = exp




D∑

j=1

log (1 + λj(A))


 .

Ideally, T (·) is the identity map (|J | = 1), but in practice, because of
ambiguities of calibration, a few eigenvalues of A are always non zero.
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PDF

Taking derivative of arg min(·) functions,

A
△
=

∂s(θ)

∂θT
(fθθ(x, θ))

−1 [fX1θ(x, θ) . . . fXDθ(x, θ)]|θ=
̂θ

Jacobian of the model is
∂s(θ)

∂θT .

Hessian of the cost function is

fθθ(x, θ)
△
=

∂2f(x, θ)

∂θ∂θT
.

Derivative of the gradient of the cost function is

fXmθ(x, θ)
△
=

∂2f(x, θ)

∂xm∂θ
.

All are evaluated at the solution θ = θ̂.

Extending this analysis to calibration along multiple directions is
straightforward.
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Performance Metrics

Derivative of solutions w.r.t. data

vec

(
∂Jf

∂xp′q′r

)

= (DJgrad(gf (Jf ))

+
ρ

2
I2 ⊗

(
F

H
F

(
I2N +

(
I2N − F

H
F
)−1

F
H
F

)))−1

×
(
Aq′JfC

H
p′q′f

)T
⊗A

T
p′vec

(
∂Vp′q′

∂xp′q′r

)
.

Derivative of residual w.r.t. data

vec

(
∂Rpqf

∂xp′q′r

)
= vec

(
∂Vpqf

∂xp′q′r

)

−
(
CpqfJ

H
f A

T
q

)T
⊗Apvec

(
∂Jf

∂xp′q′r

)
.

Making ρ = 0 gives performance of normal calibration. Consensus
polynomials construct F.
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Simulations

� LOFAR array with N = 47 stations, B = 1081 baselines,

� Calibration done for 10 time samples, 120 frequencies in [115, 185]
MHz, so D = 120× 10× 1081 data points.

� Normal calibration: each frequency is calibrated individually.

� Distributed calibration: consensus optimization with a 3-rd order
polynomial in frequency, ρ = 500.

� Sky model for calibration: point source with intensity I = 10 Jy.

� Unknown sky: Gaussian with peak flux 5× I , but only affecting short
baselines.

� Random errors for Jf , Gaussian noise with SNR = 40.
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Simulated data

Model: point source, Model error: Gaussian with large spatial scale
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Eigenvalues of A

A has only ≈ 2N non-zero eigenvalues (for real XX), rest is all 0.
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How much model error can we tolerate?

(left) Model error (middle) normal calibration (right) distributed calibration

� For this example, even a model error of ×1 is tolerable with distributed
calibration.

� This result can be easily expanded to direction dependent calibration.
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Conclusions

� We have derived analytical relationships to measure the performance
of distributed calibration.

� We can use these to study the effects of the sky model, the
regularization parameter ρ, and the consensus polynomials on
calibration.

� Even more challenging, but doable: infer the PDF of input data (where
the actual science remains) from the PDF of the output residual.

� The same technique can be used to study the performance of other
operations on data (other calibration methods, imaging, foreground
subtraction etc.). Possible applications in other fields such as machine
learning.

� All software (will be) available at https://github.com/nlesc-dirac.
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