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OVERVIEW 

• A design flow for mapping applications written in a dataflow 

language to multicore and GPU platforms is proposed 

 

• The proposed design flow is based on two major software 

frameworks 

 

• Experiments are performed on two application use cases: 

parallelized video motion detection and predistortion filtering 
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DATAFLOW (1/2): INTRODUCTION 

• The dataflow Model of Computation fits well to execution of 

concurrent applications on parallel platforms 

• The dataflow concept has been refined into variants that 

balance between analyzability and expressiveness 

• In all dataflow variants, programs are expressed as networks of 

actors that are interconnected by FIFO queues 
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DATAFLOW (2/2): RVC-CAL 

• RVC-CAL is an ISO-standardized dataflow language 

• The model of computation under RVC-CAL is Dataflow Process 

Networks (DPN) by Lee et al (1995) 

• DPN maximizes expressiveness with the cost of reduced 

analyzability 
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PROPOSED DESIGN FLOW (1/4): DAL 

• The target of our design flow is to map dataflow programs to 

multicores and GPUs 

• Distributed Application Layer (DAL) by ETH Zürich is a 

framework for executing concurrent applications on platforms 

that consist of multicore processors (e.g. Intel Xeon Phi) and 

GPUs 

• The Model of Computation assumed by DAL is Kahn process 

networks 
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PROPOSED DESIGN FLOW (2/4) 
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PROPOSED DESIGN FLOW (3/4): TRANSLATING 

ACTORS TO PROCESSES 
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PROPOSED DESIGN FLOW (4/4): TARGET 

PLATFORM CODE GENERATION 

• Once the actors of the dataflow program have been 

transformed to a DAL KPN, DAL can execute the program on 

multicores and GPUs 

• However, DAL has several backends for targets such as Intel 

Xeon Phi, GPU (OpenCL), Intel SCC and Linux-based generic 

multicores 

• The target platform is described in an XML file, where the core 

types and parameters are given, as well as the interconnect 
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EXPERIMENTS (1/2) 

• Two applications were executed on two multicore platforms 

Video 

motion 

detection 

Reconfigurable 

predistortion 

filtering 
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EXPERIMENTS (2/2) 

• The performance provided by the proposed design flow was 

compared against the multicore code generated directly by 

Orcc 

• The number of cores used varied between 1 and 16 

• An experiment was also conducted to see the effect of FIFO 

size to speedup 
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RESULTS (1/5) 

• Speedup of motion detection on the Xeon platform 
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RESULTS (2/5) 

• Speedup of motion detection on the Opteron platform 
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RESULTS (3/5) 

• Speedup of predistortion on the Xeon platform 
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RESULTS (4/5) 

• Speedup of predistortion on the Opteron platform 
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RESULTS (5/5) 
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CONCLUSIONS 

• With the platforms used in the experiments the proposed 

platform clearly yields a higher speedup when compared to the 

regular multicore generated by Orcc 

• However, the final experiment showed that with small FIFO 

sizes Orcc clearly outperforms the proposed approach 

• Both the reference approach and the proposed one relied on 

Linux inter-process communication, yet the DAL framework 

relies on mutexes and the reference approach on semaphores 

• An interesting direction for future work would be to discover if 

the advantages of both approaches could be combined 
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Thank you for your attention! 

 

Questions? 


