
MULTICORE EXECUTION OF DYNAMIC DATAFLOW 

PROGRAMS ON THE 

DISTRIBUTED APPLICATION LAYER 

1 

Jani Boutellier and Amanullah Ghazi 

Department of Computer Science and Engineering 11.12.2015 



11.12.2015 Department of Computer Science and Engineering 

2 

OVERVIEW 

• A design flow for mapping applications written in a dataflow 

language to multicore and GPU platforms is proposed 

 

• The proposed design flow is based on two major software 

frameworks 

 

• Experiments are performed on two application use cases: 

parallelized video motion detection and predistortion filtering 



11.12.2015 Department of Computer Science and Engineering 

3 

DATAFLOW (1/2): INTRODUCTION 

• The dataflow Model of Computation fits well to execution of 

concurrent applications on parallel platforms 

• The dataflow concept has been refined into variants that 

balance between analyzability and expressiveness 

• In all dataflow variants, programs are expressed as networks of 

actors that are interconnected by FIFO queues 



11.12.2015 Department of Computer Science and Engineering 

4 

DATAFLOW (2/2): RVC-CAL 

• RVC-CAL is an ISO-standardized dataflow language 

• The model of computation under RVC-CAL is Dataflow Process 

Networks (DPN) by Lee et al (1995) 

• DPN maximizes expressiveness with the cost of reduced 

analyzability 



11.12.2015 Department of Computer Science and Engineering 

5 

PROPOSED DESIGN FLOW (1/4): DAL 

• The target of our design flow is to map dataflow programs to 

multicores and GPUs 

• Distributed Application Layer (DAL) by ETH Zürich is a 

framework for executing concurrent applications on platforms 

that consist of multicore processors (e.g. Intel Xeon Phi) and 

GPUs 

• The Model of Computation assumed by DAL is Kahn process 

networks 



11.12.2015 Department of Computer Science and Engineering 

6 

PROPOSED DESIGN FLOW (2/4) 



11.12.2015 Department of Computer Science and Engineering 

7 

PROPOSED DESIGN FLOW (3/4): TRANSLATING 

ACTORS TO PROCESSES 



11.12.2015 Department of Computer Science and Engineering 

8 

PROPOSED DESIGN FLOW (4/4): TARGET 

PLATFORM CODE GENERATION 

• Once the actors of the dataflow program have been 

transformed to a DAL KPN, DAL can execute the program on 

multicores and GPUs 

• However, DAL has several backends for targets such as Intel 

Xeon Phi, GPU (OpenCL), Intel SCC and Linux-based generic 

multicores 

• The target platform is described in an XML file, where the core 

types and parameters are given, as well as the interconnect 



11.12.2015 Department of Computer Science and Engineering 

9 

EXPERIMENTS (1/2) 

• Two applications were executed on two multicore platforms 

Video 

motion 

detection 

Reconfigurable 

predistortion 

filtering 



11.12.2015 Department of Computer Science and Engineering 

10 

EXPERIMENTS (2/2) 

• The performance provided by the proposed design flow was 

compared against the multicore code generated directly by 

Orcc 

• The number of cores used varied between 1 and 16 

• An experiment was also conducted to see the effect of FIFO 

size to speedup 



11.12.2015 Department of Computer Science and Engineering 

11 

RESULTS (1/5) 

• Speedup of motion detection on the Xeon platform 



11.12.2015 Department of Computer Science and Engineering 

12 

RESULTS (2/5) 

• Speedup of motion detection on the Opteron platform 



11.12.2015 Department of Computer Science and Engineering 

13 

RESULTS (3/5) 

• Speedup of predistortion on the Xeon platform 



11.12.2015 Department of Computer Science and Engineering 

14 

RESULTS (4/5) 

• Speedup of predistortion on the Opteron platform 



11.12.2015 Department of Computer Science and Engineering 

15 

RESULTS (5/5) 



11.12.2015 Department of Computer Science and Engineering 

16 

CONCLUSIONS 

• With the platforms used in the experiments the proposed 

platform clearly yields a higher speedup when compared to the 

regular multicore generated by Orcc 

• However, the final experiment showed that with small FIFO 

sizes Orcc clearly outperforms the proposed approach 

• Both the reference approach and the proposed one relied on 

Linux inter-process communication, yet the DAL framework 

relies on mutexes and the reference approach on semaphores 

• An interesting direction for future work would be to discover if 

the advantages of both approaches could be combined 



11.12.2015 Department of Computer Science and Engineering 

17 

Thank you for your attention! 

 

Questions? 


