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Motivation

A compressed sensing problem can be formulated as

y = Ax + w , (1)

where y are the observations or data, A is the N ×M
over-complete dictionary matrix which is known and with
N < M, x is the M-dimensional sparse signal and w is the
additive noise. x contains only K non-zero entries, with
K << M. w is assumed to be a white Gaussian noise,
w ∼ N (0, γ−1I ).

l0 minimization problem which is an NP-complete problem

Basis Pursuit [ChenDonoho:SIAM98]: l1 minimization (convex
relaxation of l0), exact recovery under certain conditions on
the over-complete dictionary

Orthogonal Matching Pursuit (OMP) [TroppGilbert:TIT07], a
greedy approach, faster than l0 and l1
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State of the Art

The Sparse Bayesian Learning algorithm (SBL) was first
introduced by [Tipping:JMLR01] and then proposed for the
first time for sparse signal recovery by [WipfRao:TSP04].

All the above approaches require matrix inversions, O(M3)
complexity

[TippingFaul:IWAIS03]: Fast Marginalized ML by alternating
maximization

[ShutinBuchgraberKulkarniPoor:T-SP11] Fast SBL by
updating alternatingly and using matrix inversion lemmas.

Both previous approaches allow for a greedy initialization
(OMP-like) which improves convergence speed and
initialization issues.

[ShoukairiRao:TSP18] use of Approximate Message Passing
(AMP) to approximate matrix inversions in SBL

[DuanYangFangLi:SPL17] inverse-free SBL via Taylor series
expansion
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Our Contributions

We propose a novel Space Alternating Variational Estimation
based SBL technique called SAVE.

We also propose an AMP-style approximation of SAVE, which
reveals links to AMP algorithms.

Numerical results suggest that our proposed solution has a
faster convergence rate (and hence lower complexity) than
(even) the existing fast SBL and performs better than the
existing fast SBL algorithms in terms of reconstruction error
in the presence of noise.
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Sparse Bayesian Learning (SBL)

Bayesian CS: 2-layer hierarchical prior for x as in
[Tipping:JMLR01], inducing sparsity for x .

p(x |α) =
M∏
i=1

p(xi |αi ) =
M∏
i=1

N (xi ; 0, α−1
i ).

Further a Gamma prior is considered for the precisions αi ,

p(α) =
M∏
i=1

p(αi/a, b) =
M∏
i=1

Γ−1(a)baαa−1
i e−bαi .

The inverse of the white noise variance γ is also assumed to
have a Gamma prior,

p(γ) = Γ−1(c)dcγc−1e−dγ

Marginalizing α leads to student-t distribution for x

Christo Kurisummoottil Thomas, Dirk Slock SAVE - Space Alternating Variational Estimation for Sparse Bayesian Learning, DSW 2018 6/21



Variational Bayesian Inference

The computation of the posterior distribution of the
parameters is usually intractable. As in SAGE, SAVE is simply
VB with partitioning of the unknowns at the scalar level.
Hence the posterior gets approximated as

q(x ,α, γ) = qγ(γ)
M∏
i=1

qxi (xi )
M∏
i=1

qαi (αi ) (2)

Variational Bayes compute the factors q by minimizing the
Kullback-Leibler distance between the true posterior
distribution p(x ,α, γ/y) and the q(x ,α, γ). From
[Beal:PhD03],

KLDVB = KL (p(x ,α, γ/y)||q(x ,α, γ)) (3)
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Space Alternating Variational Estimation (SAVE)

The KL divergence minimization is equivalent to maximizing
the evidence lower bound (ELBO), L(q) [Tzikas:SPMag08].
To elaborate on this, we can write the marginal probability of
the observed data as,

ln p(y) = L(q) + KLDVB , where,

L(q) =
∫
q(θ) ln p(y ,θ)

q(θ) dθ, KLDVB = −
∫
q(θ) ln p(θ/y)

q(θ) dθ.

(4)

Let θ = {x ,α, γ}. We get for the element-wise VB
recursions

ln(qi (θi )) = < ln p(y ,θ) >ī +ci (5)

where <>ī represents the expectation operator with the
distributions qk() for all k 6= i . KLD convex in the qi (.).
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SAVE Continued ...

From p(y ,θ) = p(y |x ,α, γ)p(x/α)p(α)p(γ) we get

ln p(y ,θ) = N
2 ln γ − γ

2 ||y − Ax | |2+
M∑
i=1

(
1

2
lnαi −

αi

2
x2
i

)
+

M∑
i=1

((a− 1) lnαi + a ln b − bαi )

+(c − 1) ln γ + c ln d − dγ + constants,

On the other hand
q(θ|y) =

∏M
i=1 qxi (xi )

∏M
i=1 qαi (αi ) qγ (γ).
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SAVE Continued ...

Update of qxi (xi ):

ln qxi (xi ) =

−<γ>
2

{
< ||y − Aīxī | |2 > − (y − Aī < xī >)TAixi −

xiA
T
i (y − Aī < xī >) + ||Ai | |2x2

i

}
− <αi>

2 x2
i + cxi

= − 1
2σ2

i
(xi − µi )

2 + c ′xi .

So qxi (xi ) is Gaussian. Let Ax = Aixi + Aīxī . Then

σ2
i = 1

<γ>||Ai ||2 +<αi>
,

µi =< γ > σ2
i A

T
i (y − Aī < xī >).
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SAVE Continued ...

Update of qαi (αi ):

ln qαi (αi ) = (a− 1 + 1
2 ) lnαi − αi

(
<x2

i >
2 + b

)
+ cαi ,

⇒ qαi (αi ) ∝ α
1/2
i e

−αi

(
<x2

i >

2
+ b

)
.

The mean of this Gamma distribution is given by

< αi >=
3/2(

<x2
i >
2 + b

) , where < x2
i >= µ2

i + σ2
i .

Update of qγ(γ):

ln qγ(γ) = N
2 ln γ − γ

(
<||y −Ax ||2>

2 + d
)

+ cγ ,

⇒ qγ(γ) ∝ γN/2e
−γ

(
<||y − Ax||2>

2
+ d

)
.

The mean of the Gamma distribution for γ is given by

< γ >= N/2 + 1(
<||y −Ax||2>

2
+ d

) ,
where
< ||y − Ax | |2 >= ||y | |2 − 2yTAµ + tr{ATA

(
µµT + Σ

)
},

Σ = diag(σ2
1, σ

2
2, ..., σ

2
M) , µ = [µ1 µ

2
2 ... µM ]T
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Computational Complexity

No matrix inversions

Update of all the variables, x ,α, y , requires simple addition
and multiplication operations

yTA, ATA and ||y ||2 can be precomputed, so only need to be
computed once

The computational complexity per iteration is of the same
order as that of AMP, or Fast MML, or Fast VB
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SAVE SBL Algorithm

SAVE SBL Algorithm:

Given: y ,A,M,N.
Initialization: b, d are taken to be very low, on the order of

10−10, x0 = 0, < α0
i >= 3

σ2 ,0
i

, < γ0 >= N/2 + 1(
<||y||2>

2

) .

Iteration (t + 1)

Update σ2 ,t+1
i = 1

<γt>||Ai ||2 +<αt
i>

,

Point estimate of xi :
x t+1
i = µi =< γt > σ2

i A
T
i

(
y − Aī < x t

ī
>
)

Compute < x2 ,t+1
i >= (x2

i )t+1 + σ2 ,t+1
i and update

< αt+1
i >= 3/2(

<x
2 ,t+1
i

>

2 + b

) ,

Update the noise variance, < γt+1 >= N/2 + 1(
<||y − Axt ||2>

2 + d

)

Continue till convergence of the algorithm
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Relation between AMP and SAVE

[DonohoMaleki:PNAS09]: first order Approximate Message
Passing (AMP) algorithm (from loopy BP) for reconstructing
x . Starting with an initial guess as x (0) = 0,

AMP:

In the large system limit, N,M → ∞ with a fixed ratio
for β = N

M and a possibly non-linear function ηt ,
x t+1 = ηt(rt), rt = ATzt + x t

z t = y − Ax t +
1

β
zt−1 < η′t−1(ATzt−1 + x t−1) >︸ ︷︷ ︸

Onsager term

AMP has been generalized to G-AMP, in which the SVD of A:
A = UΣV T where U ,Σ are arbitrary (deterministic) but V
is still uniformly unitary (ie Haar distributed)
For large class of random matrices A, the behaviour of
G-AMP can be accurately tracked using state “evolution”
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Factor Graph

a ∈ A, where A = {1, 2....N} represents the indices of the
variable nodes ya and i ∈ B, where B = {1, 2....M} represents
the indices of the factor nodes xi . In the factor graph, factor
node fi represents the computation of the prior distribution of
xi .

The message for x are Gaussian or for the hyper parameters
are Gamma, hence only the means and possibly the variances
need to be propagated.
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AMP-SAVE Algorithm
Using first order Taylor series approximations and law of large
numbers similar to [DonohoMaleki:PNAS09], we arrive at
AMP-SAVE

AMP SAVE Algorithm:

Definitions: β ≡ N
M , rt ≡ AT zt + x t .

F operates elementwise, Fi (r
t
i ) = γt

αt
i +||Ai ||2γt r

t
i .

Update Equations:
x t+1 = F(rt).

zt+1 = y − Ax t+1 + (1/β)zt
1

M

M∑
j=1

γt

||Ai | |2γt + αt
i︸ ︷︷ ︸

Onsager term

.

Hyper parameter tuning:

σ2,t+1
i = 1

αt
i +||Ai ||2γt , αt+1

i =
a+ 1

2

(xt+1
i

)2+σ
2 ,t+1
i

2 +b

,∀i

γt+1 =
c+ N

2(
||y−Axt+1||2 +tr(AT AΣt+1)

2 + d

) .
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State Evolution

AMP based algorithms decouple the system of equations into
parallel AWGN channels with equal noise variance.

The quantity r t+1
i = x ti + AT

i z
t can be expressed equivalently

as xi + nti , where nti ∼ N (0, τ2
t ) and τ2

t is the decoupled noise
variance.

AMP-SAVE State Evolution:

Considering the large system limit and a Lipschitz continuous
function F , the decoupled noise variance τ2

t and γt is given
by the following SE recursion, τ2

t+1 = 1
γt+1 + 1

β

(
ξt + ζtτ2

t

)
,

1
γt+1 = 1

N ||y | |
2 + 1

β

(
ψt + τ2

t ζ
t
)
, ξt = E

(
αt
i

(γt+αt
i )

2

)
,

ζt = E
(

(γt)2

(γt+αt
i )

2

)
, ψt = E

(
(γt)2

αt
i (γ

t+αt
i )

2

)
.
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Simulation Results

We compare our algorithm with:

The Fast Inverse-Free SBL (Fast IF SBL) in
[DuanYangFangLi:SPL17]
The G-AMP based SBL in [ShoukairiRao:TSP18]
The fast version of SBL (FV SBL) in [Shutin:TSP11]

Simulations with M = 200 and K = 30

All the elements of A and x are generated i.i.d from a normal
distribution, N (0, 1)

The SNR is fixed to be 20 dB in the simulation
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NMSE Results
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Computational Complexity Results
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Conclusion

SAVE: fast SBL algorithm, which uses the variational
inference techniques to approximate the posteriors of the data
and parameters.

SAVE helps to circumvent the matrix inversion operation
required in conventional SBL using EM algorithm.

Proposed algorithm has a faster convergence rate and better
performance in terms of NMSE than even the state of the art
fast SBL solutions.

Possible extensions:

the case in which A is parametric in an unknown θ: potential
application as wireless channel estimation
SBL in the context of multiple measurement vectors case as in
[ZhangRao:JSTSP2011], with temporal correlation
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