Programmable Data Parallel Accelerator for Mobile Computer Vision

T Nyländen, H Kultala[‡], I Hautala, J Boutellier, J Hannuksela, O Silvén

University of Oulu, [†] Tampere University of Technology

> UNIVERSITY of OULU oulun yliopista

Outline

- Introduction
- Application use cases
- The proposed accelerator
- Experiments
- Discussion and future work

Introduction

Introduction (1/3)

- Performance and power efficiency requirements for mobile devices are constantly increasing
- One of the strongly growing application areas is *computer vision (CV)*
- Hardware acceleration for mobile CV exists, however no programmable solutions
- Mobile GPGPUs offer a possibility for CV acceleration

Introduction (2/3)

- Mobile GPGPUs are promising for CV
 - + High performance
 - + Programmable via OpenCL or Cuda
- Unfortunately
 - Poor performance portability
 - Major architectural differences
 - Device-specific software optimization due to
 - Arithmetic formats
 - Memory models
 - High power consumption
 - DVFS enabled quickly in practice

Tietotekniikan Osasto

UNIVERSITY of C

OULUN YLIOPISTO

Introduction (3/3)

- We propose a programmable accelerator for mobile computer vision
- The accelerator is based on the Transport Triggered (TTA) computer architecture
- Experiments show that the proposed solution clearly outperforms commercial mobile GPUs in efficiency

Application use cases

Application use cases (1/2)

- Depth Estimation (Stereo disparity)
 - SAD algorithm \rightarrow high number of computations
 - Highly parallel with very little control code
 - Image size: 427x327
 - Block size: 8x8

Application use cases (2/2)

- Face detection
 - Viola Jones based Haar-cascade classifier
 - Contains code structures that are hard to parallelize
 - A lot control code, little room for vectorization
 - Image size: 512x512
 - Window size: 20

The proposed accelerator

The proposed accelerator (1/3)

- The programmable accelerator was designed with the TCE toolset by Tampere University of Technology
- Cycle-accurate profiling based on simulation
 - Allows removing FUs with low utilization
- TTA accelerators have previously been designed for telecommunications, video and audio coding

The proposed accelerator (2/3)

- Design guideline: maximal performance per Watt
- Function units for (half-precision) floating point, integers and SIMD operations

The proposed accelerator (3/3)

Unit	Nro of units	Area (kGE)	Area (μm²)	Power consumption (mW)
Integer scalar	9	15	7023	1.2
Float scalar	6	42	20690	11.27
Half Vector	4	20	9732	6.73
LSUs	3	24	13730	2.69
RFs	4	17	8475	0.69
Vector RFs	4	16	8222	0.91
Memories	3	273	133879	6.69
TOTAL	35	436	213909	39.70

28 nm low power technology, post-place & route

Experiments

Experiments (1/3): Depth Estimation

Platform	Throughput (fps)	Throughput/W (fps/W)
AMD Radeon HD 7750 (Desktop GPU)	179.5	8.6
Intel Core i5-480M (Desktop GPP)	3.0	0.1
Qualcomm Adreno 330 (Mobile GPU)	9.8	5.4
Proposed	11.6	292.2

Experiments (2/3): Face Detection

Platform	Throughput (fps)	Throughput / W (fps/W)
Radeon HD 7750 (Desktop GPU)	31.2	0.6
Intel Core i5-480M (Desktop GPP)	30.7	0.9
Qualcomm Adreno 330 (Mobile GPU)	1.7	0.9
Qualcomm Krait 400 (Mobile GPP)	11.1	4.1 (TDP)
Proposed	3.6	90.7

Experiments (3/3): Generic Applications

CHStone benchmark results: execution time (µS) for each processor @ 100 MHz

Test	Proposed TTA	Nios II	5-stage mBlaze
sha	3298.39	6040.46	14933.69
blowfish	4884.98	10854.65	16714.82
aes	270.33	591.34	734.37
motion	54.18	n/a	n/a
jpeg	25806.71	180017.48	231131.94
gsm	129.3	198.77	n/a
adpcm	463.24	1030.78	1562.93

Discussion and future work

Discussion and future work

- Achieved power efficiency of the core outperforms existing commercial solutions
- Achieving real-time performance for video processing would require multiple instances of the proposed accelerator
- Potential future work includes redesigning the accelerator to enable acceleration of baseband processing

Thank you for your attention. Questions?

