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ABSTRACT 

 

In this work, we address human action recognition problem 

under viewpoint variation. The proposed model is 

formulated by wisely combining convolution neural network 

(CNN) model with principle component analysis (PCA). In 

this context, we pass real depth videos through a CNN 

model in a frame-wise manner. The view invariant features 

are extracted by employing convolution layers as mid-

outputs and considered as 3D nonnegative tensors. The PCA 

algorithm is separately imposed on view-invariant high-level 

space of image and video groups to seek both local and 

holistic hidden dynamics information. To deal with noisy 

data and temporal misalignment, we utilize the Fourier 

temporal pyramid to encode temporal and obtain the final 

descriptors. Our proposed framework supplies a robust 

discriminative representation with low dimension and 

computational requirements. We evaluate the proposed 

method on two standard multiview depth video datasets. The 

experimental results show that our method has superior 

performance compared to other approaches.  

 

Index Terms— Human action recognition, convolution 

neural network, principal component analysis, view 

invariance, feature representation.  

 

1. INTRODUCTION 

 

Recently, human action recognition has been an interesting 

topic in computer vision because it offers various 

capacities involving video surveillance, video games, 

robotics, etc. Along with the appearance of Kinect sensor 

[3], a kind of real-time and low-cost depth camera, the 

problems of action recognition with the depth images have 

been figured out and attracted to research community. Depth 

images themselves contain some useful information, e.g., 

geometry, shape, and texture, which allow action 

understanding easier. Observationally, there are many 

effective methods to handle the videos captured from a fixed 

viewpoint [4–9]. However, dealing with the videos acquired 

from viewpoint changes is still a big challenge. The main 

reason here is that an action acquired from different 

viewpoints gives different shapes and poses which 

significantly affect action perception. To solve this issue, the 

view-invariant features should be extracted [10–18]. For 

instance, Junejo et al. [10] extracted histogram of oriented 

gradients (HOG) and histogram of optical flows (HOF) to 

achieve the view-invariance for RGB videos. Discovering 

the local spatio-temporal features from the most 

discriminative 3D pointclouds for depth videos was 

proposed by Rahmani et al. [14, 16]. More recently, 

Rahmani and Mian [18] performed view-invariant features 

from a CNNs-based human pose model (HPM). 

Principal component analysis (PCA) is known as a powerful 

technique for dimensionality reduction and multivariate 

analysis. It was first introduced by Pearson [1] and 

developed independently by Hotelling [2]. Several 

extensions of PCA have been developed for action 

recognition task, particularly the models of jointing PCA 

with CNNs. C. Colombo et al. [19] explored further “one 

action, one eigenspace” by using PCA technique for 

reducing dimension and increasing discriminative training. 

Q. Le et al. [20] integrated the independent subspace 

analysis (ISA) and PCA to generate a deep learning model 

that learns invariant spatio-temporal features from unlabeled 

video data. S. Ji et al. [21] constructed a model by 

connecting multiple 3D-CNN models and applied PCA in 

one 3D-CNN model as a dimensional reduction tool in order 

to obtain an auxiliary output. 

 The key point of PCA technique is that it is able to 

revoke the ill correlation and extract the most relevant 

features. Meanwhile, the convolutional layers of CNNs can 

capture discriminative features from both the spatial and the 

temporal dimensions [21, 22].   

Motivated by the aforementioned ideas, we propose a 

view invariant representation model for depth human action 

recognition based on CNN and PCA (CNN-PCA). The 

designed model exploits a pre-trained human pose structure 

[18] to obtain a discriminative data space. We map each 

frame in the video to a view-invariant high level space by 

taking the 4-th convolution layer activations for view-

invariant descriptors. The PCA algorithm is applied on each 

descriptor to collect local motion information. Moreover, in 

order to capture global dynamic information within 

viewpoints and between action classes, we create the 

overlapping descriptors, and use PCA algorithm to further 



extract features and reduce dimensional space. These 

obtained features are then temporally aligned by the Fourier 

temporal pyramid algorithm to produce the final 

representation. The proposed framework is evaluated on the 

Multiview UWA3D-II [16] and the Northwestern-UCLA 

[23] datasets. The experiment results reveal that our method 

achieves higher accuracies than the state-of-the-art 

competitor [18].  
 

2. RELATED WORKS 

 

Depth-based methods. Depth-based human action 

recognition techniques can be divided into two main 

categories including holistic and local approaches. The 

former are commonly used to discover global features from 

silhouettes and space-time volume information [5, 9, 24, 

25]. Specifically, Li et al. [24] set up an expandable 

graphical model which represents the postures and dynamics 

of the explicit postures and obtains holistic dynamics from 

the contour of the silhouettes. Yang et al. [25] introduced a 

discriminative action model, depth motion maps (DMM), to 

capture the global actions and result in the histograms of 

oriented gradients (HOG) descriptor from the motion map. 

Oreifej and Liu proposed a new holistic method that uses a 

histogram of oriented 4D surface normal (HON4D) to 

capture the complex and jointed structure and motion within 

the sequence videos [5]. Yand and Tian [9] extended 

HON4D and proposed super normal vector (SNV) that splits 

a depth video into a set of space-time grids based on 

adaptive spatio-temporal pyramid.  

For the local perspective, the set of interest points is 

significantly considered [14, 16, 26–28]. Filtering the noise 

received from depth sensor [28] or exploiting histogram of 

oriented principal components (HOPC) to represent spatio-

temporal interest points [14, 16] are classical models.  

Deep learning methods: Convolutional neural networks 

have had an impressive success in large-scale image and 

video recognition. As a type of deep models, CNNs are able 

to achieve superior performance on visual object recognition 

tasks. Moreover, CNNs have been shown to be invariant to 

challenges of image and video processing such as pose 

variations, lighting conditions, background clutter, and 

camera viewpoint changes [29]. For action recognition, 

several deep network models have been proposed such as 

the convolutional gated RBMs [30], the 3D CNNs [21]. 

Noticeably, the single-frame model can perform equally well 

as the multi-frame model [31] and a single non-linear virtual 

path between all actions and all camera viewing directions 

can be learnt through a deep network named non-linear 

knowledge transfer mode (NKTM) [15]. When the NKTM 

is learned, dense trajectories of synthetic points fitted to 

mocap data are extracted and a large corpus of action video 

training data is required. However, both of them are not 

reliable and available in the case of depth videos. In the 

context of unseen poses, Rahmani and Mian [18] proposed 

an effective depth image representation which is robust to 

depth noise and temporal misalignment. 

 

3. THE PROPOSED MODEL 

 

3.1. Model architecture 

 

Our proposed model is based on HPM model [18] whose 

architecture is similar to AlexNet [32]. When feeding input 

data into CNNs, we do not use any fully connected layer. 

Instead, we exploit the convolutional layer activations to 

capture the information from local neighborhoods of a single 

image. Assume that C(m, n, s) denotes a convolutional layer 

with kernel size m  m , n filters and a stride of s. P(m, s) is 

a max pooling layer of kernel size m  m and a stride of s. 

We denote N as a normalization layer, and ReLU as a 

rectified linear unit. Our proposed CNN structure is as 

follows: 

C(11,96,4) → ReLU → P(3,2)→ N→C(5,256,1)→ ReLU→ 

P(3,2) → N → C(3,384,1)→ ReLU→ C(3,384,1) → ReLU. 

Note that the outputs herein are convolution layers 

whose elements are non-negative and obtained by a max 

rectified linear unit function. In this stage, each action depth 

image is divided into 384 patches of size 1313. 

 

3.2. Feature extraction 

 

In order to match the input dimension of CNN-based model, 

we cropped and resized each depth video frame to 227227 

and then passed its subtracted mean through the HPM 

network to extract the viewpoint invariant features. We 

considered each output from CNN as a tensor of size 

1313384 which is believed to contain almost view-

invariant features from local neighborhoods of an individual 

depth image. Let M denote the number of total action videos 

in the dataset and f denote the number of frames in a given 

Fig.1. The proposed model for feature extraction 



video. Assume the output of the t-th image in the k-th video 

sample is ( ) ,k

t
x  where ( ) 13 13 384k

t
x , 1 t  f, and 1 k  M. 

For each frame, the representative tensor ( )k

t
x  is normalized 

to 
( )

( )

( )

k

k t

t k

t F

x
P

x
, and ( )k

t
P  is then matricized to 

( )k N R

t
X in 3-mode, where N=384, and R=169. The 

empirical covariance matrix of ( )k

t
X , denoted as ( )k

t
C , is 

defined as follows  

 ( ) ( ) ( ) ( ) ( )

1

1
( )( )

N
k k k k k T

t t t t t
n

C
N

X X  (1) 

where ( ) ( )

1

1 N
k k

t t
nN

X .  

We aim at finding out a projective basis that can filter out 

the noise and reveal some hidden dynamics of each action. 

Thus, we seek the linear mappings ( )k

tQ that maximize the 

amount of variance in the corresponding matrices ( )k

tX
 
by 

applying the embedded PCA technique (EPCA) in [33]. The 

problem turns into solving an optimization problem as 

follows:  

 
( )

2
( ) ( ) ( ) ( )

:
max ( ) s.t 1

k
t

k T k k k

t t t j F
trace C q

Q
Q Q   (2) 

where 
( )

:

k

jq denotes the j-th column of the matrix ( ) .k

t
Q  The 

matrix ( )k

tX
 
is then mapped onto the linear basis ( )k

t
Q to 

obtain the low-dimensional matrix ( ) ( ) ( ) .k k k

t t t
Y X Q  By 

denoting ( ) ( )( ),k k

t t
vectz Y  we obtain the first representation 

from the k-th video sample as  
( ) ( ) ( ) ( )

1 2[ ... ]k k k k

fZ z z z .  

Let a sub-matrix of Z
(k)

 be denoted as ( )k

sub
Z , which 

contains a random number (but not equal) of columns of the 

matrix Z
(k)

. We concatenate the matrix Z
(k) 

and its 

neighborhood matrices to obtain the overlapping matrix 
( ) ( ) ( 1) ( )[ ... ],k k k k i

sub sub
P Z Z Z  where 1  i  M, and k < k+i < M. 

Obviously, these matrices contain the dynamic information 

shared by the viewpoints, intra-action classes, and inter-

action classes. In order to harvest the global information of 

the k-th video, we again impose EPCA algorithm on each 

matrix P
(k)

. The matrix P
(k)

 is then mapped onto its linear 

basis to produce the new features, which are denoted as V
(k)

. 

However, these descriptors are not strongly discriminative 

and even contain error sources. Therefore, we need to seek a 

robust representation to encode the temporal and convey 

much more holistic information. 

TABLE I.  COMPARISON OF ACTION RECOGNITION ACCURACY (%) ON THE UWA3D-II DATASET 

 

Training views V1 & V2 V1 & V3 V1 & V4 V2 & V3 V2 & V4 V3 & V4 Mean (%) 

Test view V3 V4 V2 V4 V2 V3 V1 V4 V1 V3 V1 V2  

Input: Depth images 

CCD [34] 10.5 13.6 10.3 12.8 11.1 8.3 10.0 7.7 13.1 13.0 12.9 10.8 11.2 

HON4D [5] 31.1 23.0 21.9 10.0 36.6 32.6 47.0 22.7 36.6 16.5 41.4 26.8 28.9 

SNV [9] 31.9 25.7 23.0 13.1 38.4 34.0 43.3 24.2 36.9 20.3 38.6 29.0 29.9 

DVV [35] 23.5 25.9 23.6 26.9 22.3 20.2 22.1 24.5 24.9 23.1 28.3 23.8 24.1 

CVP [36] 25.0 25.6 25.5 28.2 24.7 24.0 23.0 24.5 26.6 23.3 30.3 26.8 25.6 

HOPC [14] 52.7 51.8 59.0 57.5 42.8 44.2 58.1 38.4 63.2 43.8 66.3 48.0 52.2 

HPM+TM [18] 80.6 80.5 75.2 82.0 65.4 72.0 77.3 67.0 83.6 81.0 83.6 74.1 76.9 

Our method 83.6 82.8 83.5 88.4 76.3 81.7 80.7 83.9 85.1 85.8 85.9 82.0 83.3 

 
TABLE II. COMPARISON OF ACTION RECOGNITION 

ACCURACY (%) ON THE NORTHWESTERN-UCLA DATASET 

Method Recognition accuracy (%) 

Input: Depth images 

CCD [34] 34.4 

HON4D [5] 39.9  

SNV [9] 42.8 

DVV [35] 52.1 

CVP [36] 53.5 

HOPC [14] 80.0 

HPM+TM [18] 92.0 

Our method 93.93  

 

Fig. 3 The confusion matrix of the proposed method on 
Northwestern-UCLA dataset 

 

 

 

Fig.2. Video frame samples from the Multiview UWA3D-II 

dataset [16] (the top row) and from the Northwestern-UCLA 

dataset [23] (the bottom row) 



3.3. Temporal encoding and classification 

 

To obtain the discriminative descriptor and encode the 

temporal, we further extract global information of the entire 

video. The matries V
(k) 

are firstly vectorized to form vectors 

v
(k)

. This procedure is to isolate the video position. Then we 

employ the Fourier temporal pyramid (FTP) [13] on the 

vectors v
(k)

. More specifically, we perform the fast Fourier 

transform (FFT) on all elements of vectors v
(k) 

to find the 

first q low frequency components. Finally, these coefficients 

are concatenated into a vector f
(k)

 to form the final descriptor 

for the k-th video. Figure 1 shows our proposed framework 

for feature extraction. 

In the matching scheme, we perform one-vs-all strategy 

on the extracted feature vectors using linear support vector 

machines (SVM) [39]. 
 

4. EXPERIMENT 

 

This section evaluates the proposed model on two well-

known depth datasets: UWA3D Multiview Activity II [16] 

and Northwestern-UCLA Multiview Action3D [23]. The 

baseline results are obtained by using publicly available 

implementations of [5, 9, 14, 18, 34-36] or from the original 

papers. We used the MatConvNet toolbox [37] and tensor 

toolbox [38] to implement convolutional neural networks 

and tensor representation, respectively. In our experiments, 

we set the number of Fourier pyramid levels l = 1, and the 

number of the first low frequency Fourier coefficients q = 4. 

In classification phase, we imposed the sparse constraint on 

both training and testing sets. 

 

4.1. UWA3DII dataset [16] 

 

This dataset consists of 30 human actions that are performed 

by 10 subjects and captured from various viewpoints with 

the following styles: (1) one hand waving, (2) one hand 

punching, (3) two hand waving, (4) two hand punching, (5) 

sitting down, (6) standing up, (7) vibrating, (8) falling down, 

(9) holding chest, (10) holding head, (11) holding back, (12) 

walking, (13) irregular walking, (14) lying down, (15) 

turning around, (16) drinking, (17) phone answering, (18) 

bending, (19) jumping jack, (20) running, (21) picking up, 

(22) putting down, (23) kicking, (24) jumping, (25) dancing, 

(26) moping floor, (27) sneezing, (28) sitting down (chair), 

(29) squatting, and (30) coughing. This is a challenging 

dataset because many actions are highly similar to each other 

among action classes. Furthermore, the videos were received 

at different times from varying viewpoints and the data may 

contain self-occlusions. Figure 2 shows some samples of 

UWA3D Multiview Activity II [16] on the top row and 

some samples of Northwestern-UCLA Multiview Action3D 

[23] on the bottom row. 

In the experiments, each time we used two views for 

training and the rest two views for testing, as in [18]. Table I 

compares the results of our method and other approaches. It 

can be observed that our method improves performance 

significantly to compare with the state-of-the-art work in 

[18]. Moreover, our method achieves the highest recognition 

accuracies on all views. The experiments reveal that the 

proposed model is robust to depth videos captured from 

multiple viewpoints.     

4.2. Northwestern-UCLA dataset [23] 

 

This dataset was captured simultaneously by three Kinect 

cameras from different views. It contains RGB, depth and 

human skeleton of the following ten actions: (1) pick up with 

one hand, (2) pick up with two hands, (3) drop trash, (4) 

walk around, (5) sit down, (6) stand up, (7) donning, (8) 

doffing, (9) throw, and (10) carry. Each action was 

performed one to six times by ten different subjects. This 

dataset is challenging because of the following reasons: (1) 

there are many similar actions, e.g., “pick up with one hand” 

and “pick up with two hands”, “doffing” and “throw”; (2) 

the same information, e.g., “walking”, are shared by various 

actions.  

To firm the robustness of the introduced descriptor, we 

used only the samples from one camera for training and the 

samples from another camera for testing. This is different 

from the works in [18] and [23] that took the samples from 

two cameras for training. Table II compares the results of 

our method and other depth-based human action recognition 

approaches.  

It deserves particular notice that our method utilized 

less training samples than other approaches but it obtained 

the highest recognition rate. The confusion matrix was 

computed and described in Figure 3. As our expectation, the 

proposed approach performs a pretty high recognition 

accuracy. Specially, it recognizes one hundred percent 

accuracy rate for four actions including “pick up with two 

hands”, “sit down”, “stand up”, and “carry”. The method 

gets the lowest accuracy rate for the “doffing” action 

because it is easily confused with “pick up one hand”, “drop 

trash”, “throw” and “carry”.  

 

5. CONCLUSION 

 

We introduce a robust descriptor for depth human action 

recognition in the context of viewpoint changes. The depth 

action images are fed forward frame by frame into the CNN 

model to obtain spatio-temporal features. The 4-th 

convolution layer activations are exploited as the CNN 

outputs and then projected on the discriminative space 

encoded by PCA. The pyramidal Fourier coefficients are 

found to align temporal and form the global representation 

of the video. The experimental results on two multiview 

benchmark datasets show that our approach significantly 

outperforms the existing state-of-the-art methods.  
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