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Introduction

e We tackle the problem of cross-modality patch matching, 7.e. RGB vs sketch, RGB
vs near-infrared etc.

e In order to compare the information coming from different modalities, once has to
project them onto a new subspace where the similarity can be computed, either by:

1. using the common features among the two modalities (Siamese network)

2. using modality-specific information (Pseudo-Siamese network)

e We show that the combination of common and modality specific features is the
optimal solution (T'S-Net)

e [ixtra supervision in the intermediate layer is used to further boost the performance

Figure 1: Multi-modality patch-based matching to find
corresponding RGB image from a database with the help
of a partially drawn sketch.

e ixperimentation on three different data sets shows significant gains in performance
compared to Siamese and Pseudo-Siamese approaches.

e Codes and resources available at http://github.com/ensv/TS-Net
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traction network (bottleneck layer), FC1, FC2 or
FC3 of the metric layer. ‘1 Entropy‘ means there
is only one classification loss at the top of the
network. ‘3 Emtropy‘: each sub-network also has
his own classification loss. S*: Matchnet Network
with the same number of parameters as T'S-Net.

3 losses 1 loss

0.52 + 0.07
0.62 + 0.13
0.74 = 0.07
n/a

n/a

0.93 = 0.05
0.92 = 0.05
1.03 £ 0.006
1.05 = 0.07
1.01 = 0.11

FC3 (TS-Net)
FC2
FC1

Feature tower

S>l<

Conclusion

A novel architecture for multimodal patch
matching is proposed:

o [t takes advantages of both modality-
specific (Siamese network) and common
features (Pseudo-Siamese network)

e An additional loss helps to further boost
the performance with incremental com-
putational costs

e Experimental results demonstrate signif-
icant gains in performance compared to
Siamese and Pseudo-Siamese network.
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Experimental Results
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Figure 2: Illustration of our network architecture.
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Figure 3: Performance on the 3 datasets, for Siamese network, Pseudo-Siamese network, TS-NET,
without /with the additional contrastive loss (C).




