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1. Summary

» Motivations: Acquisition of biological HyperSpectral Volume (HSV).

' FTI reaches high spectral resolution without reducing SNR (see below).
X Higher resolution => longer exposure time => more photo-bleaching.

» Contribution: Resorting to the theory of Compressed Sensing (CS) to

> design an optimum light coding scheme,
> reduce light exposure => less photo-bleaching,
> provide a robust and stable HS recovery guarantee.

2. What is a Biological Hyperspectral Volume?

The description of a biological sample both by its spatial and spectral content,
with the purpose of distinguishing specific biological elements, as in fluorescence
Spectroscopy.
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3. Nyquist Fourier Transform Interferometry (FTI)

» Mechanism:

> For each Optical Path Difference (OPD) 2D focal plane measurements are recorded.
> An inverse 1D Fourier transform is applied along the OPD axis to achieve the HSV.
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Discrete acquisition model:
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» Pros & cons: As the number of recorded OPD points (IV¢) increases,
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4. Coded lllumination-FTI (CI-FT)

» Acquisition model:
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» Sparsity in levels in different possible bases W:

Whw: 1D discrete Haar wavelet basis 1) Transform the spectra,
Wan o 1D discrete Fourier basis 2) Find k(p) indices containing p portion of the energy,
o 3) ke(p) = # indices located at level £ s.t. Y, ke(p) = k(p).
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» Optimum coding:

Initial approach [1]: application-independent, based on the Variable Density Sampling scheme [2],

o 1
w.r.t. P[¢ € Q] x [E—Ne /2]

(with replacement)

W = Wy, select M > K log®(K)log®(N¢)

New approaches: application-dependent, based on the Multilevel Density Sampling scheme [3],

vV sampling levels ¢

W = Wy, select m; 2 ), 2_%@3 log(K') log(N¢)

(without replacement)
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» Recovery guarantee: for every pixel 3 = 1,---, IN,, solve
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di; = P[Q; € Q]~1/2, a(u) = sl

Initial approach: ¥ = Wy,

New approach 1: ¥ = Wy,

diy = N2, o(u) = 3, || Ryu — Hi, (R

New approach 2: ¥ = Wyg,
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5. Numerical Results

» Synthetic measurements: phase transition curves of successful recovery

fluorochrome dictionary (size 1024 x 39)
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» Real FT| measurements: comparison of recovery quality
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lllumination coding pattern (first row), reconstructed spatial maps at 594 nm wavelength
(second and third row), and reconstructed spectra at the center pixel (bottom).

6. Take Home Messages
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A non-uniform density sampling must be deployed for coherent sampling/sparsity bases.
The Variable Density Sampling (VDS) scheme [2] is an application-independent optimum
strategy that provides uniform recovery guarantee.

» The Multilevel Density Sampling (MDS) scheme [3] is an application-dependent optimum
strategy that provides non-uniform recovery guarantee.

» Both VDS and MDS schemes can be leveraged for the realization of CI-FTI in (less photo-
bleaching) fluorescent spectroscopy.
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» MDS scheme results in superior reconstruction as it takes into account the sparsity structure
of the fluorochrome spectra.




