

Abstract

- Prostate cancer is one of the types of cancer with the highest incidence in humans. In particular, prostate cancer is the main cause of death from cancer in men over 70 years of age.
- In this work granulometries are presented as a novel image descriptor to identify abnormal patterns in the prostatic tissue.
- The morphological alteration suffered by the main structures of pathological glands are registered by the proposed descriptor and achieved in a feature vector.
- A committee of **SVM classifier** is trained to discriminate between healthy and pathological tissue using **45 Whole Slide Images**.
- Accuracy, sensitivity, specificity and AUC values higher than **0.89±0.01** demonstrate the effectiveness of the method.

GRANULOMETRY-BASED DESCRIPTOR FOR PATHOLOGICAL TISSUE DISCRIMINATION IN HISTOPATHOLOGICAL IMAGES

Ángel Esteban¹, Adrián Colomer¹, Valery Naranjo¹ and María Ángeles Sales² {ngeesav, **adcogra**, vnaranjo}@i3b.upv.es

¹ Instituto de Investigación e Innovación en Bioingeniería, 13B, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain. ² Servicio de Anatomía Patológica, Hospital Clínico Universitario de Valencia, Valencia, Spain.

$$PS_{\Gamma}(f,n) = \frac{m\left(\Pi_{\gamma n}(f)\right) - m\left(\Pi_{\gamma n+1}\right)}{m(f)}$$

$$PS_{\Phi}(f,-n) = \frac{m\left(\Pi_{\varphi n}(f)\right) - m\left(\Pi_{\varphi n}(f)\right)}{m(f)}$$

$$\delta_g^{(n)}(f) \longrightarrow \delta_g^{(n)}(f) = \delta_g^{(1)} \delta_g^{(n-1)}(f)$$
, being $\delta_g^{(1)}(f) = \delta_B(f) \wedge g$

* K-fold cross-validation procedure over the whole feature dataset composed. Similar number of instances per fold was obtained: K = 5.

The folds present an imbalanced behaviour between healthy and malignant instances: a committee of T SVMs is learned. Soft majority voting was used as the final criterion.

Each of the K committees is evaluated by using the test set.

Number of samples for different patch sizes:

	512 x 512	1024 x 1024	2048 x 2048
Healthy	11232	3408	1008
Malignant	1517	663	298
	_		

 \Rightarrow Results for the best patch size (i.e. 1024 x 1024) for the different evaluated

	$LBP_{P,R}^{riu2}$	$LBPV_{P,R}^{riu2}$	Gran.	Geodesic Gran.
су	0,7124 ± 0,1434	0,6392 ± 0,0973	0,8443 ± 0,0323	0,9825 ± 0,0155
	0,8249 ± 0,0975	0,7235 ± 0,0872	0,8876 ± 0,0142	0,9960 ± 0,0031
city	0,7048 ± 0,1685	0,6492 ± 0,1603	0,8580 ± 0,0431	0,9882 ± 0,0160
vity	0,7553 ± 0,1232	0,5877 ± 0,2588	0,7737 ± 0,0360	0,9532 ± 0,0209
9	0,4859 ± 0,1418	0,3351 ± 0,0725	0,6209 ± 0,0455	0,9482 ± 0,0427

Conclusions

- In this work, a novel descriptor to characterize histological images of prostate cancer and differentiate between healthy and pathological regions was presented.
- The proposed descriptor registers the granularity of the elements that compose the prostatic tissue.
- The obtained results showed an outperformance of the proposed descriptors with respect to baseline **texture descriptors**.
- The optimal results were obtained for the geodesic granulometric descriptor using a patch size of **1024 x 1024**.
- In future work, the proposed descriptors will be used for classifying different grades of cancer.
- The annotated database that is being collected will be **public in the future** to facilitate the comparison of the methods proposed in the scientific community.

