

Introduction

Image Aesthetic Assessment

- Distinguish high quality images from low quality ones
- Classification
- Classify quality of an image into binary classes
- Regression
 - Quality of an image is measured by a continuous score or a rank

Overview

- Determine which image has a higher quality
- Rank images using pairwise comparison method
- Find quality of an image, comparing with reference images

Pairwise comparison matrix

Proposed Algorithm

PAC-Net

- Aesthetic feature extraction
- Pairwise feature comparison
- Output relative rank

PAC-NET: PAIRWISE AESTHETIC COMPARISON NETWORK FOR IMAGE AESTHETIC ASSESSMENT

Keunsoo Ko, Jun-Tae Lee, and Chang-Su Kim

Aesthetic feature extraction The network is based on the GoogLeNet Employ all its nine inception modules (21 convolution layers) Extracts aesthetic features $F(I_i)$ of image I_i Pairwise feature comparison Compare the aesthetic features in pairs using comparator The comparator contains two successive fully-connected layers and output 2-dimensional vector $\mathbf{r} = (r_i, r_j)$ Rank of two images I_i , I_j is determined according to the vector - If $r_i > r_i$, I_i is declared to have a higher quality than I_i Aesthetic-Adaptive Cross Entropy Loss Pairs of images with similar aesthetic scores can confuse the network in training Similar to the Focal loss function based on cross entropy loss $L_{aes}(\mathbf{r}, \bar{\mathbf{r}}) = -\sum_{i=1}^{d} \overline{r_i} (1 - r_i)^{\alpha(1-d)} logr_i$ Ranking Adaptively determined according to the difference *d* $-\overline{s_i}$: ground truth aesthetic scores of I_i - D : maximum score difference within the dataset $d = \frac{|\bar{s}_1 - \bar{s}_2|}{\bar{s}_1 - \bar{s}_2|}$ Aesthetic Quality Assessment (Ranking) PAC-Net determines relative ranks The higher quality image gets point 1, while the lower quality one gets point -1 If the dataset contains N images, $\frac{N(N-1)}{2}$ such comparison are made Summing up the points Get ranking by sorting the total points Aesthetic Quality Assessment (Classification) Select reference images Softmax - Aesthetic scores are close to the medium value of the dataset Compute the point, by comparing an image with each Softmax reference image Dichotomize into binary classes Softmax - Declare the test image as high quality if its average point is higher than 0, and low quality otherwise Pairwise comparison

Experimental Results

Evaluate the performance

Both ranking and classification result - CE : adopts the cross entropy loss - AA : adopts the aesthetic-adaptive cross entropy loss

Algorithm	AVA dataset		AADB dataset
	Accuracy (%)	$ ho\left(\uparrow ight)$	ho (†)
Kong <i>et al</i> . [17]	77.3	0.5581	0.6782
PAC-Net + CE	<u>81.1</u>	0.8447	0.8122
PAC-Net + AA	82.2	0.8711	0.8371

Classification result on AVA dataset

Algorithm	Accuracy (%)	
AVA [8]	67.0	
RDCNN [13]	74.4	
DMA-Net [14]	75.4	
Reg-Net [17]	77.3	
MNA-Net [16]	77.4	
A-Lamp [15]	82.5	
PAC-Net+CE	81.1	
PAC-Net+AA	82.2	

Predicted ranking

Test images			
Ground-truth ranks	1	2	
Predicted ranks	1	2	

Classification results

(a) True positives

(c) True negatives

(b) False positives

(d) False negatives