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Bilateral filter (BF)

A discrete function x[j], j ∈ {1, 2, . . . , N}, is an input signal for the
bilateral filter. The output signal y[i] is a weighted average of the signal
values x[j]:

y[i] =
∑
j

wij∑
j wij

x[j].

Every index i has a spatial position pi, and a spatial distance ‖pi − pj‖ is
determined for all pairs i and j.
The weights wij are defined by means of a guidance signal g[i]:

wij = exp

(
−‖pi − pj‖

2

2σ2d

)
exp

(
−(g[i]− g[j])2

2σ2r

)
, (1)

where σd and σr are the filter parameters. When g = x, the bilateral
filter is nonlinear and called self-guided.
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Iterated bilateral filter

• The weights wij are the entries of a symmetric nonnegative
matrix W . Let us denote by D the diagonal matrix with the positive
diagonal entries di =

∑
j wij . Then BF is the vector transform

y = D−1Wx. The symmetric nonnegative defined matrix
L = D −W is referred as to a Laplacian matrix. The spectrum of
D−1W is real, and the eigenvalues corresponding to the highest
oscillations lie near 0.

• The BF transform y = D−1Wx can be applied iteratively,
1 by changing the weights wij at each iteration using the result of the

previous iteration as a guidance signal g, or
2 by using the fixed weights, calculated from the initial signal as a

guidance signal, for all iterations.

The former results in a nonlinear filter, the latter generates a linear
filter, which may be faster, since the BF weights are computed only
once at the very beginning.
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Guided filter (GF)

Algorithm 1 Guided Filter (GF)

Input: x, g, w, ε
Output: y
meang = fmean(g, w)
meanx = fmean(x,w)
corrg = fmean(g. ∗ g, w)
corrgx = fmean(g. ∗ x,w)
varg = corrg −meang. ∗meang
covgx = corrgx −meang. ∗meanx
a = covgx./(varg + ε)
b = meanx − a. ∗meang
meana = fmean(a,w)
meanb = fmean(b, w)
y = meana. ∗ g +meanb
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Guided filter (GF)

fmean(·, w) is a mean filter with the window width w. The constant ε
determines the smoothness degree: the larger ε the larger smoothing
effect. The dot preceded operations .∗ and ./ denote the componentwise
multiplication and division. Arithmetical complexity of the GF algorithm
can be O(N).
GF is y = Wx, where the entries of the symmetric matrix W (g) are

Wij(g) =
1

|ω|2
∑

k : (i,j)∈ωk

(
1 +

(gi − µk)(gj − µk)

σ2k + ε

)
.

The windows ωk of width w around all k have the number of pixels |ω|.
The values µk and σ2k are the mean and variance of g over ωk.
Since di =

∑
j wij = 1, the graph Laplacian matrix equals L = I −W .

The eigenvalues of L(g) are real nonnegative with the low frequencies
accumulated near 0 and high frequencies near 1. Similar to BF, the
guided filter can be applied iteratively.
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Spectral properties of the graph-based filters

The spectral factorization of the symmetric nonnegative graph Laplacian

L = UΛUT

is determined by the diagonal matrix Λ with the diagonals λi and the
orthogonal matrix U = [u1, . . . , un] with the columns ui.
The eigenvalues λ1 ≤ · · · ≤ λi ≤ · · · ≤ λn can be treated as graph
frequencies. The corresponding eigenvectors ui of the Laplacian matrix L
are generalized eigenmodes and demonstrate increasing oscillatory
behavior as the magnitude of the graph frequency increases.
The Graph Fourier Transform (GFT) of an image x is defined by the
matrix transform x̂ = UTx, the inverse GFT is the transform x = Ux̂.
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Spectral properties of the iterated low-pass filters

Let us consider the iterated BF or GF vector transforms. In numerical
analysis, the linear transformations (D−1W )k are called the power
iterations with the amplification matrix D−1W or simple iterations for
the equation Lx = 0 with the preconditioner D. Application of the
transform D−1W preserves the low frequency components of x and
attenuates the high frequency components. It is also well-known that the
Krylov subspaces well approximate the eigenvectors corresponding to the
extreme eigenvalues. Thus the projections onto the suitable Krylov
subspaces would be an appropriate choice for high- and low-pass filters.
The Krylov subspace methods are efficient owing to their low cost,
reasonably good convergence and simple implementation without painful
parameter tuning. The convergence can be accelerated by the aid of
good preconditioners.
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Preconditioned Conjugate Gradient acceleration of a
smoothing filter

Algorithm PCG(kmax) with lmax restarts

Input: x0, kmax, lmax

Output: x
x = x0
for l = 1, . . . , lmax do
r = W (x)x−D(x)x
for k = 1, . . . , kmax − 1 do
s = D−1(x)r; γ = sT r
if k = 1 then p = s else β = γ/γold; p = s+ βp endif
q = D(x)p−W (x)p; α = γ/(pT q)
x = x+ αp; r = r − αq; γold = γ

endfor
endfor
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Locally Optimal Block Preconditioned Conjugate Gradient
acceleration of a smoothing filter

Algorithm 3 LOBPCG method

Input: L, D, x0, and a preconditioner T
Output: xkmax

p0 = 0
for k = 0, . . . , kmax − 1 do
λk = (xTkLxk)/(xTkDxk)
r = Lxk − λkDxk
wk = Tr
use the Rayleigh-Ritz method for the pencil L− λD

on the trial subspace span{wk, xk, pk}
xk+1 = wk + τkxk + γkpk

(the Ritz vector for the minimum Ritz value)
pk+1 = wk + γkpk

endfor
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noisy = clean + randn(size(clean))*0.1
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   error BF. PSNR = 33.739

  error CG. PSNR = 33.8332

  error GF. PSNR = 29.692
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BF versus GF
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LOBPCG versus PCG
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Conclusions

• The bilateral and guided filters are written in the guided form.

• PCG acceleration can be applied to iterated smoothing filters in the
guided form, formally solving Lx = 0 by PCG.

• LOBPCG acceleration can be also applied to iterated filters.

• PCG and LOBPCG algorithms considerably accelerate low-pass
filtering without quality degradation.
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