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Top DeepFace matches 

Histogram of MSE distance of top-10 matching 
images from training and test datasets against 1000 

queries of GAN-generated images

Categories GAN vs Train GAN vs Test
Young 0.537 +/- 0.04 0.510 +/- 0.04

Old 0.491 +/- 0.04 0.495 +/- 0.04

Smiling 0.523 +/- 0.04 0.546 +/- 0.04

Non-smiling 0.511 +/- 0.05 0.545 +/- 0.05

Categories GAN vs Train GAN vs Test
Young 0.517 +/- 0.07 0.539 +/- 0.07

Old 0.528 +/- 0.06 0.533 +/- 0.06

Table 2: Statistical comparisons of distributions of 
minimum distances for Celeb-A and CACD-2000

Preserving Privacy
Possible measures
1. “DeepFace” distance [Taigman et al., 2014]
2. Local Binary Pattern [Chen et al., 2014]

Learning Structure & Performance

Key Take-aways
• GAN is a promising approach for 

protecting facial privacy and preserving 
learnability in distributed learning.

• Other GAN-based approaches use 
Differential Privacy, which are shown to 
be unnecessary in our applications.

Privacy challenges
• Raw data contains sensitive information (e.g., 

health, financial): cannot leave premise
• May not trust cloud
• Traditional encryption protects storage and 

transfer

Desirable attributes
• No changes to central learner
• Extensible to multiple data sources from 

different entity
• Privacy with minimum performance loss in 

support of learning tasks.
• Quantifiable privacy protection

Generative Model Approach
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Use GAN trained on sensitive data to 
generate synthetic surrogates
• Medical domain: Lung disease [Beaulieu-Jones et 

al., 2017], ICU Time series [Hyland, Esteban & 
Ratsch, 2017], EHR [Choi et al., 2017]

• This work focus on facial images

Source CACD-2000 age Celeb-A age Celeb-A smile

original 77.2% 81.2% 92.0%

synthetic 76.5% 78.4% 91.6%

Synthetic images
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Build Classifier on 
• Smiling vs Not-smiling
• Old vs Young

{young, smiling} {old, not-smiling}

Local Site with Sensitive Data Public Centralized Training

VAT [Miyato, et al. 2018]

Table 1: Comparison of classifier accuracy when generated images
are substituted for originals.


