A 4D DCT-Based Lenslet Light **Field Codec**

Eduardo A. B. da Silva

Márcio P. Pereira

Gustavo Alves

Murilo B. de Carvalho

Fernando Pereira telecomunicações

SAMSUNG Vanessa Testoni

Signal, Multimedia and Telecommunications Lab, COPPE/Poli/UFRJ Instituto Militar de Engenharia Universidade Federal Fluminense Instituto Superior Técnico, Universidade de Lisboa - Instituto de Telecomunicações

Samsung Research Brazil

instituto de telecomunicações

Outline

- 1. Context and Objectives
- 2. 4D DCT-Based Lenslet Light Field Codec
- 3. Performance Assessment
- 4. Conclusions

1. Context and Objectives

Context

ICIP 2018

- Light field describes light flowing in every direction through every point in space
- 2D camera array and plenoptic photography (lenslets) are capture systems for light fields
- Light field representations need a huge amount of data
- State-of-the art coding approaches:
 - Make use of prediction, using view synthesis and depth maps

telecomunicações

Context

- Codec was applied to the lenslets light fields datasets from the JPEG-Pleno Call for Proposals
- Luminance was encoded using transforms of dimensions 13x13x15x15 (13x13 views, each one divided into 15x15 blocks)
- Chrominance was encoded using transforms of dimensions 13x13x8x8 (13x13 views, each one divided into 8x8 blocks)
- Spatial blocks that are smaller than 15x15 for luminance or 8x8 for chrominance were extended using simple pixel repetition.
- This work is a contribution and is in the context of JPEG Pleno

Objectives

 Explore an alternative approach using light fields intrinsic 4D redundancy

2. 4D DCT-Based Lenslet Light Field Codec

Block Diagram

- A simple way to explore light fields 4D redundancy:
 - 4D DCT transform
 - Hexadeca-tree bitplane clustering
 - Entropy coding

 We refer to it as MuLE-TH (Multidimensional Light Field Encoder based on Hexadeca-Tree Bitplanes)

ICIP 2018

4D Transform

ICIP 2018

4D Transform

4D Transform

- Subtract from the light field half its dynamic range (in the case of 10-bit light fields, 1024/2).
- Compute a 4D DCT $(t \times s \times v \times u)$,
- Represent it as 32-bit integers
- Group them in subbands
 - A 16 × 16 × 512 × 512 light field transformed by an 8 × 8 × 8 × 8
 transforms is grouped as 4096 (8⁴) subbands, each with 16/8 × 16/8 × 512/8 × 512/8 coefficients.

4D DCT as blocks of coefficients

4D DTC 8 × 8 × 8 × 8 (t × s × v × u)

IME

instituto de telecomunicações

4D DCT grouped as subbands

4D DCT 8 × 8 × 8 × 8 (t × s × v × u) – grouped into subbands

instituto de

telecomunicações

Hexadeca-tree Bitplanes

ICIP 2018

Quadtrees

Octrees

ø

ICIP 2018

Hexadeca-trees

- Extension to 4D of quadtrees and octrees.
- Used to locate the non-zero 4D DCT coefficients
- Does this by bitplanes, starting from the highest (most significant).
- How?

Hexadeca-tree bitplane encoding

- 1. Set the precision to be used (number of bits)
- 2. Starts from the coefficients that are non-zero at the most significant bitplane
 - It is composed by the coefficients whose magnitude is larger than the threshold, in this case equal to half the dynamic range of the coefficients
- 3. Partition the light field in hexadeca-trees until the coefficients that are non-zero at the current bitplane are located.
 - This provides joint coding for the leading zeros for each bitplane
 - Very efficient in 4D.
- 4. Once these are located, send their binary representation at the precision set in step 1, including their sign, to the entropy coder.
- 5. Go to the next bitplane (less significant)
- 6. Repeats the process recursively starting from each subimage generated by the hexadeca-tree from step 3.
- 7. Finish when all the non-zero coefficients at the set precision have been encoded.

ICIP 2018

Entropy Coder

ICIP 2018

Entropy Coder

Uses a context-based adaptive arithmetic coder

- One binary context for significance flags (indicating hexadecatree partitions) by bit-plane.
- One non-binary context for DC coefficients per bit plane
 - With as many symbols as DC coefficients up to 512 symbols. For more than 512 symbols, the remaining least significant bits are encoded using an equally likely binary context.
- One non-binary context for AC coefficients per bit plane
 - A similar strategy as for encoding the DC coefficients is used.

3. Performance Assessment

PSNRyuv = (6*PSNRy+PSNRu+PSNRv)/8 SSIMyuv = (6*SSIMy +SSIMu +SSIMv)/8

Dataset

- JPEG Pleno lenslet dataset
- 15x15 views of 626x434 pixels
- From left to right: Bikes, Danger, Pillars, Fountain and Friends

instituto de

telecomunicações

MuLE-TH Performance Assessment

- MuLE-TH codec was applied to the lenslets light fields datasets from the JPEG-Pleno Call for Proposals
- Luminance was encoded using transforms of dimensions 13x13x15x15 (13x13 views, each one divided into 15x15 blocks)
- Chrominance was encoded using transforms of dimensions 13x13x8x8 (13x13 views, each one divided into 8x8 blocks)
- Spatial blocks that are smaller than 15x15 for luminance or 8x8 for chrominance were extended using simple pixel repetition.

MuLE-TH Performance Assessment

 PSNR-Y, PSNR-YUV, SSIM-Y and SSIM-YUV have been computed for rates approximately between 0.005 bpp and 0.75 bpp

Bjontegaard BD-rate relative to HEVC

- Comparison only with methods with available 4:2:2 results
- HEVC and VP9
 - Pseudo temporal serpentine scan order of views
 - HEVC codec: x265 v2.3

	Bikes	Danger	Pillars	Fountain	Friends
VP9	-22.52	-18.51	-21.71	-18.07	-21.92
USTC codec ⁽¹⁾	-21.00	NA	NA	NA	NA
TUT codec ⁽²⁾	-26.74	-84.52	-51.76	-9.05	-10.06
MuLE-TH	-39.11	-53.19	-38.74	-24.73	-34.83

(1) – Shegyang Zhao, Zhibo Chen, "Light field image coding via linear approximation prior," in IEEE International Conference on Image Processing 2017 – Light Field Coding Grand Challenge, Beijing-China, September 2017

(2) – Ioan Tabus, Petri Helin, Pekka Astola, "Lossy compression of lenslet images from plenoptic cameras combining sparse predictive coding and JPEG 2000," in IEEE International Conference on Image Processing 2017 – Light Field Coding Grand Challenge, Beijing-China, September 2017

PSNR and SSIM Results

Bikes PSNR YUV

ICIP 2018

Bitrate (bpp)

Danger PSNR YUV

Bitrate (bpp)

ICIP 2018

Danger SSIM YUV

Signals, Multimedia and Telecommunications COPPE/Poil-UFR

ICIP 2018

Pillars PSNR YUV

Binaie (Dpp

Pillars SSIM YUV

ICIP 2018

Fountain PSNR YUV

ICIP 2018

Fountain SSIM YUV

ICIP 2018

Friends PSNR YUV

ICIP 2018

Friends SSIM YUV

Bitrate (bpp)

SSIM-YUV

ICIP 2018

Mule-TH comparison with JPEG Pleno Verification Model

MuLE-TH x JPEG Pleno VM

- JPEG Pleno VM and MuLE-TH codec were applied to the lenslets light fields datasets from JPEG Pleno Common Test Conditions.
- Luminance and chrominance were encoded using transforms of dimensions 13x13x31x25 (13x13 views, each one divided into 14x25 blocks)

Pipeline – MuLE-TH x JPEG Pleno VM

• Assessment:

PSNRyuv = (6*PSNRy+PSNRu+PSNRv)/8 SSIMyuv = (6*SSIMy +SSIMu +SSIMv)/8

Bikes PSNR YUV

ICIP 2018

SAMSUNG

 10^1

Bikes SSIM Y

ICIP 2018

Danger PSNR YUV

Danger SSIM Y

ICIP 2018

Pillars PSNR YUV

ICIP 2018

Pillars SSIM Y

ICIP 2018

Fountain PSNR YUV

ICIP 2018

Fountain SSIM Y

ICIP 2018

Analysis

- The results for the lenslets are essentially competitive with benchmarks and other sophisticated methods
- This has been achieved with just a simple, naive encoder that tries to exploit the light fields 4D redundancy as a whole.

4. Conclusions and Future Work

Conclusions

- Proposed coding approach is natively able to exploit intrinsic
 4D redundancy of a light field.
- Proposed method does not rely on depth maps or use view synthesis
 - It is therefore immune to the common problems derived from low accuracy of depth maps estimation.
- Results for the lenslet dataset suggest that exploitation of 4D redundancy as a whole has good potential.

ICIP 2018

• Remark: This work is a contribution to JPEG Pleno

Future Work

- Research and discover other ways to explore 4D redundancy
 - For instance: prediction

Thank you!

