
› Find the set of local quantizers 𝑞𝑖𝑡of a GOP such: 

 

 

 

› Backward temporal distortion derivative: 

 Assuming that the intrinsic distortion (𝑑𝑘𝜏) related to a spatial position only depends 

on its local quantizers: 

 
 

  𝑈𝑘𝜏  is obtained by the backpropagation of the 𝑈𝑘𝜏  values from the last non-reference 

frame of the GOP onto the first image, and defined by the recursion: 

 

 

 

 

  𝑈𝑘𝜏  is an accumulation factor that is dependent on neither the distortion nor the rate 

  It is a weight related to how important is the current CU for coding the next frames in 
the GOP. 

› After some mathematical developments, we obtain the optimal CU distortion 
𝐷𝑘𝜏: 

 

› Introducing a D to Q approximation based on a Laplacian distribution of residues  

                                    , optimal local quantizers are: 

 
 

› When minimizing the problem with equality constraints, nothing guarantees that 
optimal quantizers do not infringe the CU maximal constraint and the maximal 
rate constraint.  
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› Context and motivations: 

 Growing demand of the video traffic prompted more flexible platforms for delivery.  

 CBR is the most common rate control technique but suffers from several limitations: 

• Variable quality depending on the content complexity. 

• Over bandwidth consumption when delivering easy contents. 

 Quality-based Rate control algorithm should widely outperform CBR in terms of R-D 
performances, subjective experience and bandwidth savings. 

› Contributions: 

 Inverting the paradigm: 

From 

 

Into  

 

 

 

 

 Constant Quality Control (CQC) algorithm minimizes the bitrate under constraints:  

• A target video quality level. 

• A capped bitrate. 

 CQC reuses a temporal distortion propagation model to compute optimal local CUs 
quantizer. 

› Outcomes: 

  -7.6% BD-BR PSNR improvement in average over state-of-the art algorithm in HEVC. 

  Meet the target level of quality with an average deviation of 6.7%. 

 

 

Overview 
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› Distortion propagation at CU level: 
 

 

 

 

 

 
  

 𝑖𝑡 the CU index 𝑖 in the frame numbered 𝑡 

  𝑅𝑒𝑓(𝑖𝑡) the set of reference CUs used for motion compensation 

  𝑝𝑖𝑡  probability that the CU
𝑖𝑡

 is inter coded 

  𝑟𝑗,𝑖𝑡  ratio of spatial overlap after motion compensation 

  η𝑖𝑡 the projected distortion onto CU
𝑖𝑡

 

  𝑑𝑖𝑡 the intrinsic distortion of CU
𝑖𝑡

 

  𝐷𝑖𝑡 = 𝑑𝑖𝑡 + 𝜂𝑖𝑡  the total CU distortion 

 

› Generalizing propagation along a group of pictures (GOP) of length 𝑇: 
 

 

Temporal Distortion Propagation Model 
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Local Quantization Optimization Problem 

𝐷𝑘𝜏 =
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Optimization with inequality constraints 
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Distortion Model Accuracy R-D Performances 

› Using Machine learning techniques, target distortion is modelled and reached 
according to content characteristics: 

  From look-ahead estimations, each GOP target distortion is scaled. 

› Evaluation process: 

 X265 open source software 

 Target GOP distortion is set on a PSNR base 

 For each target distortion, average MSE over the whole clip is measured 

 
 

  

 

 

 

 
 

› Experiments: 

 X265 open source software 

 Constant Qp evaluation 

 Followings JCT-VC 
Recommendations 

 YUV PSNR based results 

› Results: 

 7,6 % bandwidth savings 

 Up to 9,6% for low rates 

› Conclusion: 

 Successful approach 

 Significant bandwidth savings 
particularly adapted to  
current OTT-TV purposes 

› Future works: 

 Improve look-ahead 
estimations 

 Address psycho-visual based 
distortion 

 
 

 

 
 

Test sequences 

PSNR Based BD-BR 

Full Rates  
(QP 22-42) 

Low Rates 
(QP 27-42) 

Class B 

Average -6,5% -8,4% 

Best -12,7% -13,3% 

Worst 0,9% -2,5% 

Class C 

Average -9,3% -12,6% 

Best -19,5% -21,6% 

Worst 1,3% -0,1% 

Class D 

Average -8% -9% 

Best -13,8% -16,4% 

Worst -4,9% -6% 

Class E 

Average -6,9% -8% 

Best -9,9% -11,6% 

Worst -1,9% -2,2% 

All 

Average -7,6% -9,6% 

Best -19,5% -21,6% 

Worst 1,3% -0,1% 

Test Sequences 
Target Distortion (MSE) 

10 20 30 40 50 

Class B Average 11,9 21,5 35,4 46,7 57,3 

Class C Average 9,0 18,4 28,5 38,9 53,8 

Class D Average 9,5 20,1 31,4 42,9 54,3 

Class E Average 12,7 21,9 28,9 47,0 62,2 

All 

Average 10,5 20,4 31,3 43,8 56,7 

Min 6,9 15,3 23,9 31,8 40,8 

Max 16,9 26,9 46,5 71,8 83,6 

Av. error (%) 5,3% 1,9% 4,3% 9,6% 13,5% 

› Fairly efficient model: 

 Average deviation of 6,9% 

 Deviation increases with 
distortion 

› Future works: 

 Refine R-D model to improve 
model accuracy 

 Take into account skipped-CU 
proportion 

 

 

 
 

 
 

 

› Step 1: Dealing with maximal CU constraint: 

 All violated distortion constraints are solved 
by packet thanks to the equality constraint. 

 Minimization is repeated until no constraints 
are violated. 

 

› Step 2: Dealing with maximal rate constraint: 

 𝑅𝑇𝑜𝑡 is computed using the Shannon model: 

 

 

 

 𝐼𝑓 𝑅𝑇𝑜𝑡 > 𝑅𝑇𝑎𝑟𝑔𝑒𝑡, target distortion 𝐷𝑇𝑎𝑟𝑔𝑒𝑡 is 
rescaled. 

 

 

 

 

𝐷′𝑇𝑎𝑟𝑔𝑒𝑡 = 𝐷𝑇𝑎𝑟𝑔𝑒𝑡. 2
−2
𝑁.𝑇

(𝑅𝑇𝑜𝑡 −𝑅𝑣 −𝑅𝑇𝑎𝑟𝑔𝑒𝑡) 

𝑞𝑘𝜏 𝑘𝜏∈ 𝐼𝑑𝑥
∪ 𝜆∗  = 𝐴𝑅𝐺𝑀𝐼𝑁 𝑅𝑇𝑜𝑡 + 𝜆 𝐷𝑇𝑜𝑡  −  𝐷𝑖𝑡

𝑖𝑡𝑡

𝐽𝑇𝑜𝑡

 


