CONSTANT QUALITY CONTROL BASED ON TEMPORAL DISTORTION BACKPROPAGATION IN HEVC

Overview

- Context and motivations:
 - Growing demand of the video traffic prompted more flexible platforms for delivery.
 - CBR is the most common rate control technique but suffers from several limitations:
 - Variable quality depending on the content complexity.
 - Over bandwidth consumption when delivering easy contents.
 - Quality-based Rate control algorithm should widely outperform CBR in terms of R-D performances, subjective experience and bandwidth savings.

Contributions:

Inverting the paradigm:

From
$$\{QStep_k\}_{k=1}^{N_b} = ARGMIN(D_{Tot}), \quad subject \ to \ \sum_t \sum_{i_t} R_{i_t} = R_{Tot}$$

Into
$$\{QStep_k\}_{k=1}^{N_b} = ARGMIN\left(\sum_t \sum_{i_t} R_{i_t}\right)$$
$$subject \ to \ \begin{cases} \frac{R_{Tot} < R_{Target}}{N \cdot T} = D_{\mu} \\ \forall i_t \ D_{i_t} < D_{Max} \end{cases}$$

- Constant Quality Control (CQC) algorithm minimizes the bitrate under constraints:
 - A target video quality level.
 - A capped bitrate.
- CQC reuses a temporal distortion propagation model to compute optimal local CUs quantizer.
- Outcomes:
- -7.6% BD-BR PSNR improvement in average over state-of-the art algorithm in HEVC.
- Meet the target level of quality with an average deviation of 6.7%.

Optimization with inequality constraints

- When minimizing the problem with equality constraints, nothing guarantees that optimal quantizers do not infringe the CU maximal constraint and the maximal rate constraint.
- Step 1: Dealing with maximal CU constraint:
- All violated distortion constraints are solved by packet thanks to the equality constraint.
- Minimization is repeated until no constraints are violated.
- Step 2: Dealing with maximal rate constraint:
- R_{Tot} is computed using the Shannon model:

$$R_{Tot} = -\frac{1}{2} \cdot \sum_{t} \sum_{i_t} \log_2\left(\frac{D_{i_t}}{c \cdot \sigma_{i_t}^2}\right)$$

• If $R_{Tot} > R_{Target}$, target distortion D_{Target} is rescaled.

$$D'_{Target} = D_{Target} \cdot 2^{\frac{-2}{N.T}(R_{Tot} - R_v - R_{Target})}$$

$$D_{i_t}$$

Distortion Model Accuracy

- Using Machine learning techniques, target distortion is modelled and reached according to content characteristics:

- Fairly e
- Ave
- Dev
- dist
- Future
- Refi moo
- Take

Médéric Blestel, Julien Le Tanou, Michael Ropert Video Innovation Research, MediaKind

Temporal Distortion Propagation Model Distortion propagation at CU level:

$$D_{i_t} = \eta_{i_t} + d_{i_t}$$
$$\eta_{i_t} = p_{i_t} \cdot \sum_{j_{t_{ref}} \in Ref(i_t)} r_{j_{t_{ref}}, i_t} \cdot D_{j_{t_{ref}}}$$

the CU index *i* in the frame numbered *t*

- $Ref(i_t)$ the set of reference CUs used for motion compensation
- p_{i_t} probability that the CU_i is inter coded
- *r*_{j,it} ratio of spatial overlap after motion compensation
- η_{i_t} the projected distortion onto CU_i
- $d_{i_{+}}$ the intrinsic distortion of $CU_{i_{+}}$
- $D_{i_t} = d_{i_t} + \eta_{i_t}$ the total CU distortion

Generalizing propagation along a group of pictures (GOP) of length T:

$$\begin{split} D_{Tot} &= \sum_{t=0}^{T-1} \left(\sum_{i_t} p_{i_t} \sum_{i_{t-1} \in Ref(i_t)} r_{i_{t-1},i_t} \left(p_{i_{t-1}} \sum_{i_{t-2} \in Ref(i_{t-1})} r_{i_{t-2},i_{t-1}} \dots \right) \right) \\ & \dots \left(\dots p_{i_1} \sum_{i_0 \in Ref(i_1)} r_{i_0,i_1} d_{i_0} + d_{i_1} \right) + \dots \right) + d_{i_t} \end{split}$$

- From look-ahead estimations, each GOP target distortion is scaled.
- **Evaluation process:**
- X265 open source software
- Target GOP distortion is set on a PSNR base
- For each target distortion, average MSE over the whole clip is measured

rly efficient model:			Target Distortion (MSE)				
Average deviation of 6,9%	lest	Sequences	10	20	30	40	50
Deviation increases with	Class B	Average	11,9	21,5	35,4	46,7	57,3
distortion	Class C	Average	9,0	18,4	28,5	38,9	53,8
ture works: Refine R-D model to improve model accuracy	Class D	Average	9,5	20,1	31,4	42,9	54,3
	Class E	Average	12,7	21,9	28,9	47,0	62,2
Take into account skipped-CU	I	Average	10,5	20,4	31,3	43,8	56,7
proportion		Min	6,9	15,3	23,9	31,8	40,8
	All	Max	Max 16,9 26,9 46,5 71	71,8	83,6		
		Av. error (%)	5,3%	1,9%	4,3%	9,6%	13,5%

Loc a Find tl	al Quanti he set of lo	<mark>zati</mark> ocal (
	$\left\{q_{k_{\tau}}\right\}_{k_{\tau}\in$	Idx
Backw	vard tempo	oral
Ass	uming that	the
on	its local qua	antiz
 U_k frai 	$_{ au}$ is obtaine me of the G	d by OP c
		I
		v
 <i>U_k</i> 	$_{ au}$ is an accu	mula
lt i the	s a weight r GOP.	elate
After s $D_{k_{\tau}}$:	some math	nem
Introd $D_{k_{\tau}} = -\frac{1}{1}$	ucing a D t $\frac{\sigma^2_{k_\tau} Q^2_{k_\tau}}{2\sigma^2_{k_\tau} + Q^2}$	$\frac{1}{2}$ o Q
R-D	Perform	anc
Fyneri	iments.	

- Experiments:
- X265 open source
- Constant Qp evalu
- Followings JCT-VC Recommendations
- YUV PSNR based r
- **Results**:
 - 7,6 % bandwidth s
 - Up to 9,6% for low
- Conclusion:
- Successful approace
- Significant bandwi particularly adapte current OTT-TV pu
- Future works:
 - Improve look-ahea estimations
 - Address psycho-vi distortion

ion Optimization Problem

quantizers q_{i_t} of a GOP such:

$$\cup \{\lambda^*\} = ARGMIN\left(\underbrace{R_{Tot} + \lambda \left(D_{Tot} - \sum_t \sum_{i_t} D_{i_t}\right)}_{J_{Tot}}\right)$$

distortion derivative:

intrinsic distortion $(d_{k_{\tau}})$ related to a spatial position only depends ers:

$$\frac{\partial D_{Tot}}{\partial q_{k_{\tau}}} = \frac{\partial d_{k_{\tau}}}{\partial q_{k_{\tau}}} U_{k_{\tau}}$$

, the backpropagation of the $U_{k_{\tau}}$ values from the last non-reference onto the first image, and defined by the recursion:

$$U_{k_{\tau-1}} = \sum_{i_{\tau}} p_{i_{\tau}} \rho_{i_{\tau-1},i_{\tau}} U_{i_{\tau}} + 1 \text{ and } U_{n_{T-1}} = 1$$

with $\rho_{j_{t-1},i_{t}} = \begin{cases} 0 & if \quad j_{t} \notin Ref(i_{t}) \\ r_{j_{t-1},i_{t}} & if \quad j_{t-1} \in Ref(i_{t}) \end{cases}$

ation factor that is dependent on neither the distortion nor the rate ed to how important is the current CU for coding the next frames in

atical developments, we obtain the optimal CU distortion

$$D_{k_{\tau}} = D_{Target} \cdot \frac{U_{k_{\tau}}^{-1}}{\sum_{t=0}^{T-1} \sum_{i_{t}} U_{i_{t}}^{-1}}$$

approximation based on a Laplacian distribution of residues optimal local quantizers are:

$$qp_{k_{\tau}} = 4 + 3\left(log_{2}(12) + log_{2}(\frac{\sigma_{k_{\tau}}^{2}D_{k_{\tau}}}{\sigma_{k_{\tau}}^{2} - D_{k_{\tau}}}\right)$$

	Test sequences		PSNR Based BD-BR			
software uation			Full Rates (QP 22-42)	Low Rates (QP 27-42)		
		Average	-6,5%	-8,4%		
S	Class B	Best	-12,7%	-13,3%		
results		Worst	0,9%	-2,5%		
savings v rates		Average	-9,3%	-12,6%		
	Class C	Best	-19,5%	-21,6%		
		Worst	1,3%	-0,1%		
ich idth savings ed to urposes	Class D	Average	-8%	-9%		
		Best	-13,8%	-16,4%		
		Worst	-4,9%	-6%		
	Class E	Average	-6,9%	-8%		
		Best	-9,9%	-11,6%		
ad		Worst	-1,9%	-2,2%		
isual based	All	Average	-7,6%	-9,6%		
		Best	-19,5%	-21,6%		
		Worst	1,3%	-0,1%		