Automatic 3-D Skeleton-Based Segmentation of Liver Vessels from MRI and CT for Couinaud Representation

Marie-Ange Lebre¹ Antoine Vacavant¹ Manuel Grand-Brochier¹ Odyssée Merveille² Pascal Chabrot³ Armand Abergel³ Benoît Magnin³

¹Université Clermont Auvergne, CNRS, SIGMA, Institut Pascal, F-63000 Clermont-Ferrand, France
 ²ICube, UMR7357 - CNRS - Université de Strasbourg, Strasbourg, France
 ³Université Clermont Auvergne, CHU, CNRS, SIGMA, Institut Pascal, F-63000 Clermont-Ferrand, France

Objectives

- Visualize automatically liver components on both modalities (CT and MRI).
- Extract the hepatic vascular tree through 3D skeletonization process for Couinaud representation.
 Data used:
- ► 20 CT from SLIVER, 20 CT from IRCAD
- ► 40 MRI from local hospitals

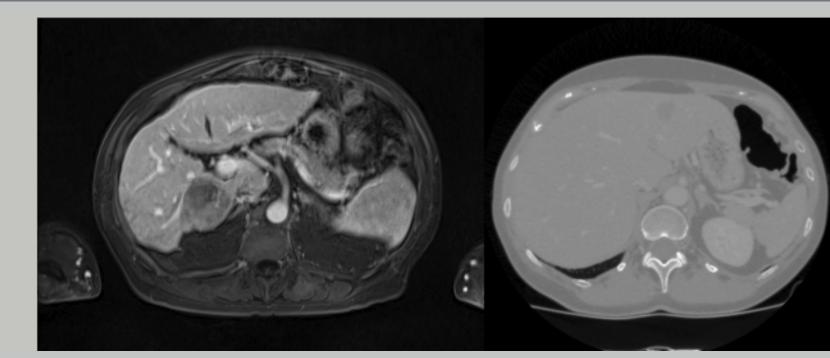
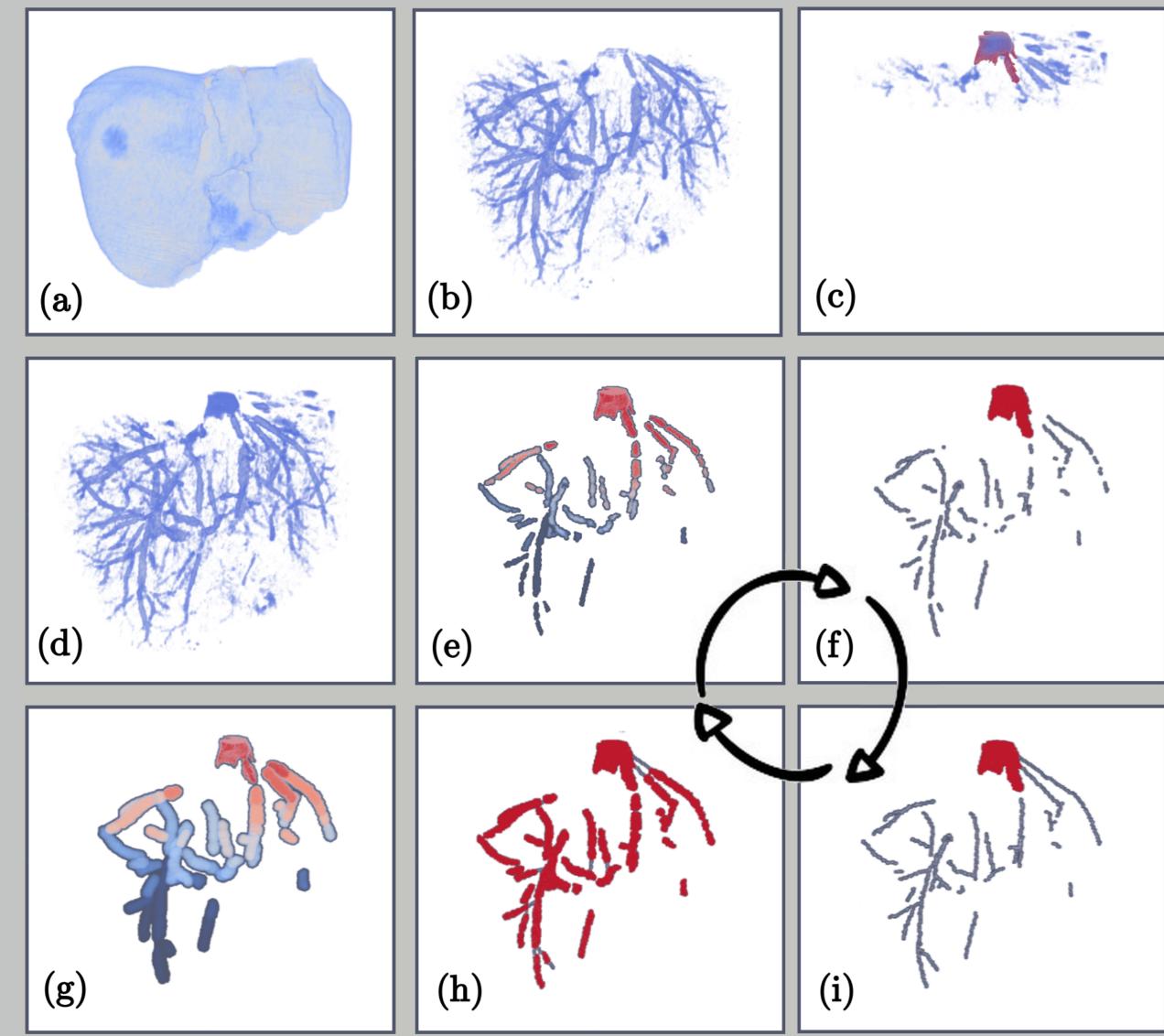
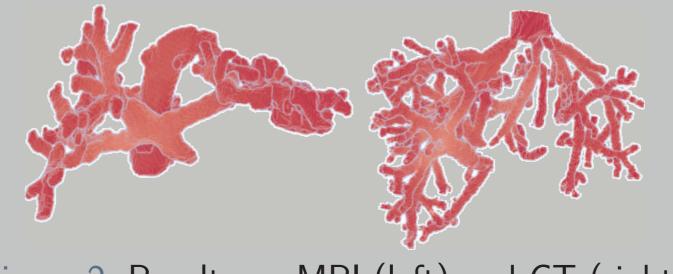



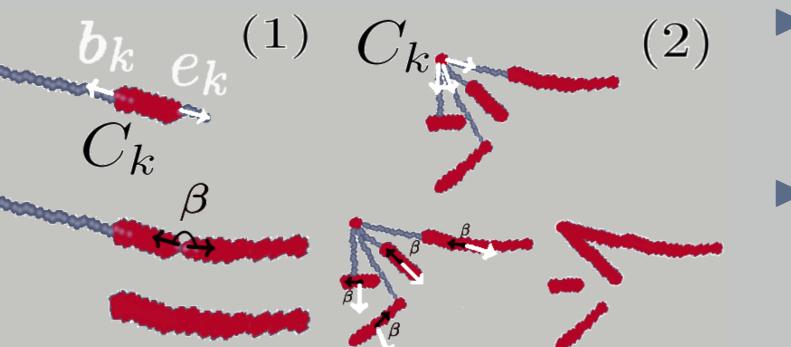
Figure 1: Different modalities: MRI (left) and CT (right)

Methodology

I. Partial skeletonization:

II. 3-D Reconstruction




Figure 2: Results on MRI (left) and CT (right)

- RORPO algorithm applied on the liver segmentation I, it enables multi-scale vessel extraction: I_{RORPO} [3]
- Fast marching phase used at each voxel of $S_{partial}$ in I_{RORPO} (Figure 2)

III. Hepatic and portal veins extraction

- Erosion of the vessel segmentation obtained in step II. to retrieve largest vessels
- Extraction of the two main components (hepatic and portal veins are not connected) (Figure 3)
- Extraction of their centerlines (Figure 4)

Centerlines extension - Connection - Validation

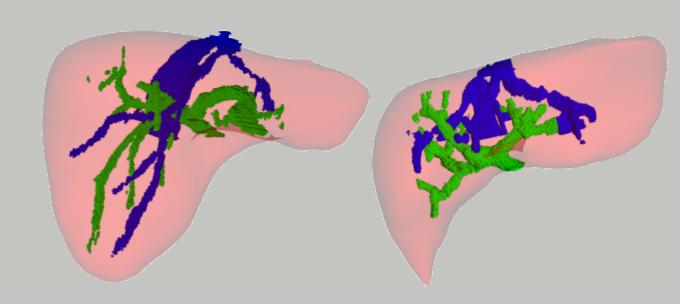
► (1) C_k with |I_k| > 1: directional vectors computation b_k and e_k and centerlines extension

- ► (a) Automatic liver segmentation: I [1]
- (b) Brightest vessels detected by Sato's filter: I_s
- ► (c-d) Largest component detection for the common trunk
- ► (e) Main components extraction
- ► (f) Centerlines extraction
- ► (g-h) Centerlines extension Connection Validation
- ► (i) Skeleton : S_{partial}

- (2) C_k with |I_k| = 1: four closest components and directional vectors computation
- ▶ Validation according to conditions on β and r_j with $j \in \{1, 2\}$ defined by:

$$r_{j} = \frac{\sum_{i=1}^{|\mathbf{E}_{k,l}|} \mathbf{I}_{s}^{j}[i]}{max(\mathbf{I}_{s}^{j}) \times |\mathbf{E}_{k,l}|}$$

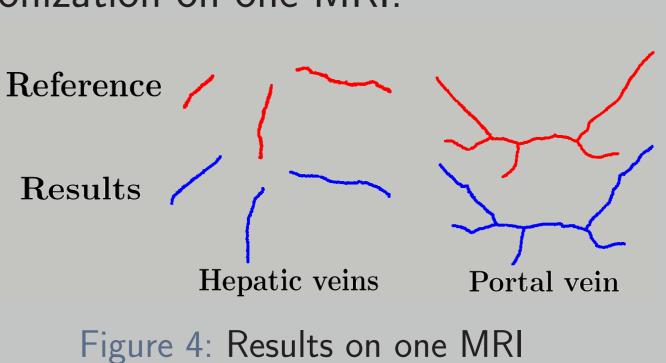
 $E_{k,l}$: voxels centerline between C_k and the encountered component C_l . I_s^j : results from Sato's filter with the *j*th set of parameters. $I_s^j[i]$: intensity with $i \in \{1, |E_{k,l}|\}$ of each voxel of $E_{k,l}$ in I_s^j .


Results

Performance of vessels segmentation on 15 CT and one MRI:

Table 1: Results on CT and MRI.

CT	Accuracy	Specificity	Sensitivity	
	0.97±0.01	0.98±0.01	0.69±0.10	
	Precision	False Positive Rate	False Negative Rate	
	$0.61 {\pm} 0.07$	$0.01{\pm}0.01$	0.32±0.09	


MRI Acc Spec Sens Pre FPR FNR

Performance of hepatic and portal veins skeletonization on one MRI:

 $M_{0} = \frac{|S_{partial}|}{|I_{Ref}|}$ (2) M₀: overlap of the detected skeleton S_{partial} within the reference vascular segmentation image I_{Ref} [2]

Table 2: Overlap rate $M_0(\%)$ and mean distance $M_d(mm)$ with the reference skeleton

(1)

hepatic**0.98**0.980.540.300.0100.45portal**0.97**0.980.700.510.0020.32

Figure 3: Results of hepatic vein (blue) and portal vein (green) extraction on MRI of patients with advanced cirrhosis

Hepatic vein	M ₀ (%)	M _d (mm)	Portal vein	M ₀ (%)	M _d (mm)
	95.46	8		100	7

This step is essential to construct the Couinaud scheme whose method will be presented in a future work

Discussion & future works

- Automatic 3D liver vessels segmentation based on partial skeletonization process
- ► Efficient on MRI and CT even in case of advanced disease
- Segmentation of enough vessels to obtain a Couinaud representation
- Add comparisons with skeletonization process
- Evaluate more results on MRI
- Create gold MRI standard annotations for benchmarking
- Evaluate the Couinaud representation on CT and MRI

References

[1] MA Lebre, K Arrouk, AKV Văn, A Leborgne, M Grand-Brochier, P Beaurepaire, A Vacavant, B Magnin, A Abergel, and P Chabrot.

Medical image processing and numerical simulation for digital hepatic parenchymal blood flow. *SASHIMI, MICCAI*, 2017.

[2] K Lidayová, H Frimmel, C Wang, E Bengtsson, and O Smedby.
 Fast vascular skeleton extraction algorithm.
 Pattern Recognition Letters, 76, 2016.

[3] O Merveille, H Talbot, L Najman, and N Passat. Curvilinear structure analysis by ranking the orientation responses of path operators. *TPAMI*, 40, 2018.

http://www.institutpascal.uca.fr/index.php/fr/tgi-caviti Created with MEXbeamerposter http://www-i6.informatik.rwth-aachen.de/latexbeamerposter.php m-ange.lebre@uca.fr