

Adaptive Specular Reflection Detection and Inpainting in Colonoscopy Video Frames

Mojtaba Akbari¹, Majid Mohrekesh¹, S.M.R. Soroushmehr^{2,3}, N. Karimi¹, S. Samavi^{1,3}, K. Najarian^{2,3}

¹Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran ²Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, U.S.A. ³Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI, U.S.A. kayvan@med.umich.edu

Introduction

- Importance of Polyp Detection
- Specular reflection results in detection challenges
- Using different color spaces for detection of reflection

Main Steps of Proposed Detection Method

- RGB Color Space Method
- HSV Color Space Method
- > SVM Classifier

Color Space Selection and RGB Detection Method

- Non-linear SVM Classifier
 - > 12 Features Including Statistical Measures of Each Channel
 - Normalization of Features
 - > 80% of Data for Training and 20% for Testing
 - Classification Based on Dice Score

RGB Detection Method

- Thresholding on Intensities of Each Channel
- Voting Scheme Based on Decision **Result of Channels**

HSV Detection Method

H Channel

- Extraction of 3×3 Overlapped Patches from Each Image
- Variance Calculation and Normalization of Each Variance Matrix
- S and V Channels
 - Normalization and using Ramp
 Function to Remove Uninformative
 Data
- Aggregating all Features of Three Channels
- Adaptive Thresholding for Binary Segmentation

Proposed Inpainting Method

- Removing Image Frame
- Finding Equivalent Patch
 - Finding Four Candidates in Four Main Directions
 - Using Proposed Cost Function to Select Best Candidate: $Cost = \Delta_{\mu} \times \Delta_{\sigma} \times d \times (1 - NC)$

Enhancing Inpainted Image Quality by Applying Proposed Smoothing Method on Edges

Reflection Mask

Inpainted Image

Input Image

Proposed Inpainting Method

Results and Comparison

Method	Dice (%)	Accuracy (%)	Specificity (%)	Precision (%)
RGB	60.26	99.62	99.96	87.52
HSV	67.34	99.58	99.78	66.44
Proposed	71.79	99.68	99.92	82.78
Ganz et al	61.76	99.34	99.43	48.67

M. Ganz, X. Yang, and G. Slabaugh, "Automatic Segmentation of Polyps in Colonoscopic Narrow-Band Imaging Data," IEEE Trans. Biomed. Eng., vol. 59, no. 8, pp. 2144–2151, 2012.