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Low complexity convolutional neural 
network for vessel segmentation in 
portable retinal diagnostic devices

 Diabetic retinopathy (DR) can be controlled with regular 
examination of eyes in early stages.

 Analysis of the retinal vessels are useful in eye disease diagnosis.

Introduction
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 Convolutional neural networks (CNNs) have proper segmentation 
results, but their structures are complex.

 Simplification methods including pruning and quantization, 
recently have been developed on the CNN structure.

 Real time vessel analysis for real time applications such as 
intraocular surgery and portable devices.

 CNN structural complexity puts on a lot of arithmetic operations 
which should be reduced.

 Simplification techniques on CNN structure may lead to significant 
loss of accuracy.

 Proper knowledge about retinal vessels could be helpful during any 
retinal surgery operation.

Challenges
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 0     𝑖𝑖𝑖𝑖 𝑊𝑊 = 0
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙(𝑖𝑖, 𝑗𝑗) =  �0    𝑊𝑊𝑙𝑙(𝑖𝑖, 𝑗𝑗) < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅 ∗ 𝑀𝑀𝑅𝑅𝑠𝑠(𝑊𝑊𝑙𝑙) 
1                                             𝑂𝑂𝑅𝑅ℎ𝑅𝑅𝑃𝑃𝑒𝑒𝑖𝑖𝑀𝑀𝑅𝑅       

 

Flowchart of the proposed simplification Method 

Quantization

Pruning

𝑊𝑊(𝑖𝑖, 𝑗𝑗) =  𝑊𝑊(𝑖𝑖, 𝑗𝑗) −  𝜂𝜂 (
𝜕𝜕 𝐶𝐶

𝜕𝜕 𝑊𝑊(𝑖𝑖, 𝑗𝑗) ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙(𝑖𝑖, 𝑗𝑗)) 
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Visual illustration of segmnetation. (a) CNN with original 
parameters, (b) CNN with FCLs quantization, (c) CNN with FCLs 

quantization and CLs pruning. 

  

Segmentation results 
on STARE image dataset
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Structure of original and simplified CNNs

Performance Comparison
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Method SEN SPE ACC 
[1] (2015) 0.7716 0.9701 0.9497 
[2] (2016) 0.7412 -- 0.9585 
[3] (2016) 0.7140 -- 0.9545 
[4] (2014) 0.7305 0.9688 0.9440 
[5] (2018) 0.7538 0.9608 0.9440 

(Proposed CNN with  
original parameters) 0.7823 0.9770 0.9617 

(Proposed Quantized CNN) 0.7792 0.9740 0.9587 
(Proposed Pruned-Quantized 

CNN) 0.7599 0.9757 0.9581 
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