# SINGLE-IMAGE RAIN REMOVAL USING RESIDUAL DEEP LEARNING

Takuro Matsui EEE Dept. Keio University, Japan

# **Research Background**

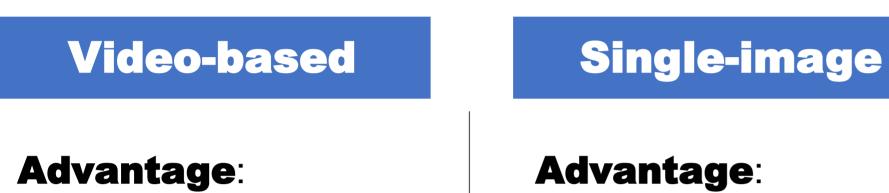
**1. De-raining** 

Outdoor vision systems



Blurring effect and haziness

#### **2. Two main approaches**



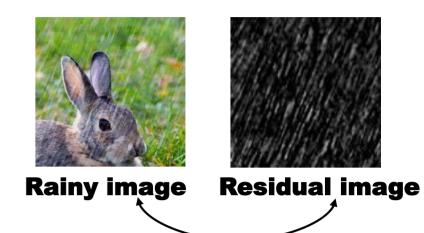
# **Proposed methods**

### **1. Residual Learning**

#### **Plane Net**



#### **Residual Net**



- Speed up training process.
- Solve tradeoff between accuracy and network depth.
- Solve the dependency on image context

Easy to detect rain streaks

#### **Disadvantage**:

The redundant temporal information

### Low calculation cost

### **Disadvantage**:

Less information for detecting rain streaks

We focus on single-image based approach.

# **Conventional methods**

## **1. Decomposition method**

Common approaches decompose a image into high and low frequency domain.



**Input rainy image** 

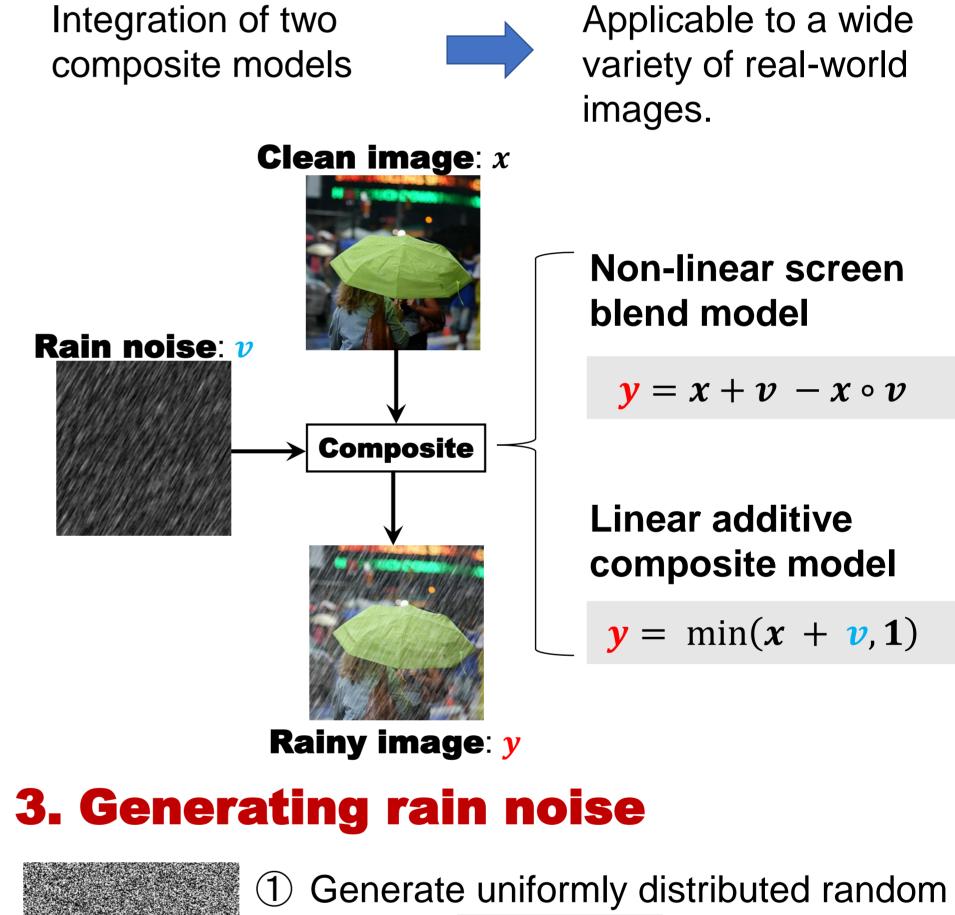


#### Y.Luo [1] Decomposition + dictionary learning



**DerainNet** [2] Decomposition + 3-layer CNN

#### **2. Composite models**



numbers  $\boldsymbol{u} \in \mathcal{U}(0,1)$ .

(2) Adjust the noise amount  $\sigma_a$  and crop between 0 and 1.

Leave rain streaks

Unnatural hue change

#### **2. Problems**

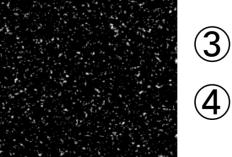
- Hue change
- Over fitting
- Not applicable to various types of real images

# References

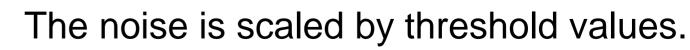
[1] Y. Luo, Y. Xu, and H. Ji, "Removing rain from a single image via discriminative sparse coding," in International Conference on ComputerVision (ICCV), 2015. [2] Fu, Xueyang, et al. "Clearing the Skies: A deep network architecture for singleimage rain removal." IEEE Transactions on Image Processing 26.6 (2017): 2944-2956.

[3] K. He, J. Sun, and X. Tang, "Single image haze removal using dark channel prior," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 12, pp. 2341–2353, Dec 2011.

$$v_i \leftarrow \min(\max(\sigma_a(u_i - \lambda) + \lambda, 0), 1)$$
  
s.t.  $\lambda = 0.5$ 



(3) Apply Gaussian filter. 
$$\hat{v} = \mathcal{F}_g v$$



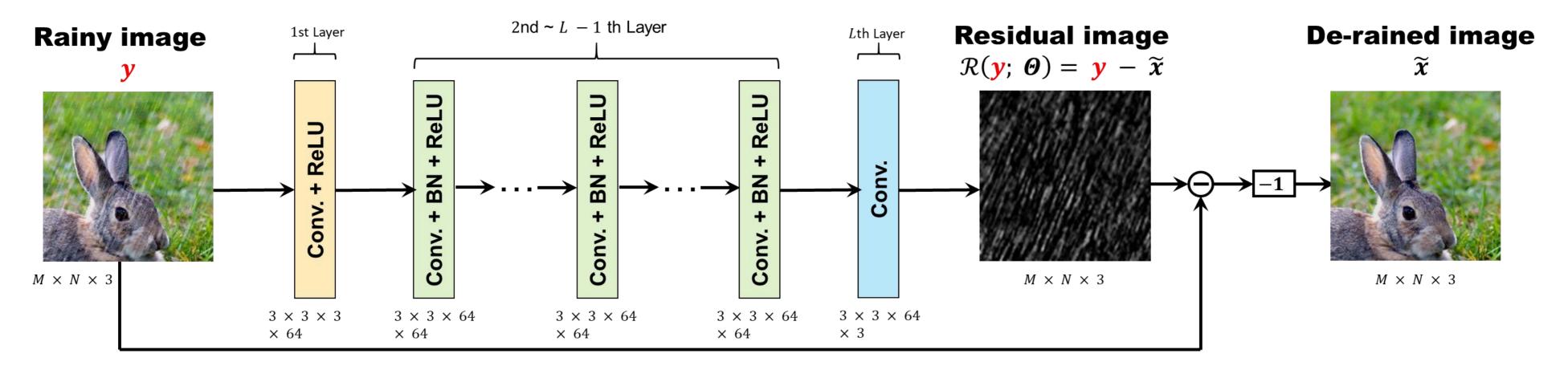
$$v_i \leftarrow \min\left(\max\left(\frac{\hat{v}_i - \sigma_{T_{\min}}}{\sigma_{T_{\max}} - \sigma_{T_{\min}}}, 0\right), 1\right)$$



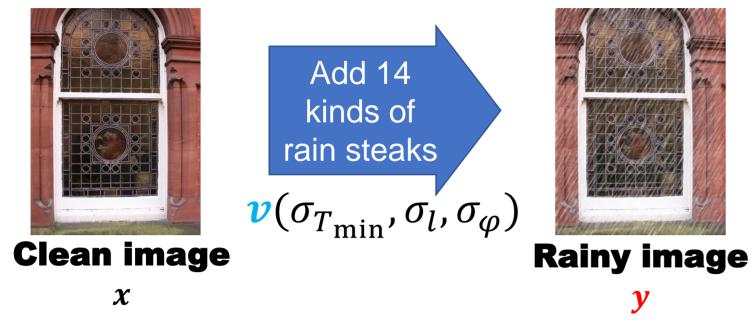
5 A motion filter and the adjustment of rain scale are applied.

$$\boldsymbol{v} \leftarrow \sigma_{s} \mathcal{F}_{m} \boldsymbol{v}$$

# Training



① Add rain streaks on 900 images.



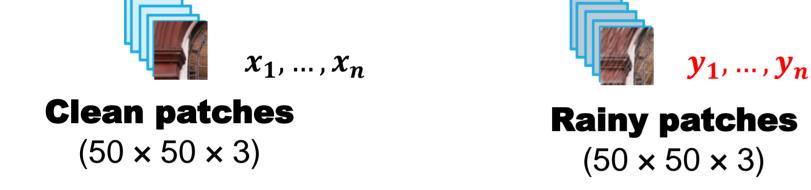
(2) 264,000 patches are randomly collected.

 $z_{1} = \phi(W_{1} * y + b_{1})$   $z_{l} = \phi(BN(W_{l} * y + b_{l})), l = 2, ..., L$  $y - \tilde{x} = (W_{L} * z_{L-1} + b_{L})$ 

#### 2. Results on real-world data

For clearer appearance, a de-hazing method is applied as a post-processing.





- ③ The depth and breadth of our network are empirically set to L = 20 and  $n_l = 64$ .
- ④ Caffe software package is used for training. iters.: 100,000 (8 hours), solver: Adam

$$E(\Theta) = \frac{1}{2N} \sum_{n=1}^{N} ||(\mathbf{y}_n - \mathbf{x}_n) - \mathcal{R}(\mathbf{y}_n; \Theta)||_2^2$$
  
s.t.  $\Theta = \{W_1, b_1, \dots, W_L, b_L\},$ 

# **Experimental results**

#### **1. results on synthetic data**

|          | PSNR           |           |                  |       | SSIM           |           |                  |       |
|----------|----------------|-----------|------------------|-------|----------------|-----------|------------------|-------|
|          | Rainy<br>image | Y.Luo [1] | DerainNet<br>[2] | Ours  | Rainy<br>image | Y.Luo [1] | DerainNet<br>[2] | Ours  |
| umbrella | 26.58          | 31.68     | 26.30            | 35.02 | 0.858          | 0.910     | 0.902            | 0.975 |
| bird     | 18.37          | 23.77     | 19.23            | 28.83 | 0.729          | 0.815     | 0.847            | 0.940 |
| BSD100   | 22.48          | 26.65     | 22.89            | 29.90 | 0.841          | 0.878     | 0.898            | 0.950 |

**Real-world rainy image** 

**Dehazed rainy image** 

Y.Luo [1]



DerainNet [2]

Ours

Ours (estimated rain noise)

#### **3. Impact of composite models**

Mixture of additive and blend model is the best.



Rainy image (synthetic)

Additive composite model

Screen blend model **Proposed** (additive and screen blend)



**Screen blend** 

model

22.71 **29.49** 

0.888 0.949

#### Images





0.888

**Ground Truth** 

 Synthesized rainy image
 Y.Luo [1]

 PSNR: 18.37 [dB] SSIM: 0.729
 PSNR: 23.77 [dB] SSIM: 0.815

0.891





 DerainNet
 Ours
 Ours

 PSNR: 26.30 [dB] SSIM: 0.902
 PSNR: 35.02 [dB] SSIM: 0.975
 (estimated rain noise)

**Rainy image** (real-world)

Additive composite model **Proposed** (additive and screen blend)

# Conclusion

- Residual CNN for de-raining
- Residual learning and batch normalization achieves favorable performance.
- Our diverse rainy dataset make the model applicable to real-world images.
- Proposed method outperforms other state-of-theart methods quantitatively and qualitatively.