

Markerless Closed-Loop Projection Plane Tracking for Mobile Projector-Camera Systems Niklas Gard, Peter Eisert

Intrinsically and extrinsically calibrated projector-camera system.

Motivation

- Augmented reality assistance without glasses is enabled by a combined system of a projector and a camera.
- Geometrically undistorted projections on arbitrary geometries can be created by compensating captured distortions of the projected content.
- Scene information is acquired by determining the geometric relation between projected image and captured image.
- Modern small and mobile projectors allow sharp projection without focus adjustment.

Closed-Loop Tracking

• Self correction mechanism:

- Fixes metric size, aspect ratio and angles of projection while projection plane or projector is moving.
- Three degrees of freedom for planar projection plane: normal vector \boldsymbol{n} and distance $\boldsymbol{t} = [0, 0, t_{z}]^{T}$.
- Linearized rotation matrix ΔR compensates small offsets between frames.

A distortion of the projection is visible, if the camera image (observation) and the rendered expectation mismatch. It is removed by aligning both images.

Geometric model: the movement of the projection plane is estimated from image displacements.

Projector-based Optical-Flow

How to manipulate the pose in the synthetic image to match with the captured image?

- Estimate optical-flow between camera image I and synthetically rendered image $\hat{I} \rightarrow analysis-by-synthesis$ approach.
- p moves along viewing ray v' of projector if plane moves: $\widehat{\boldsymbol{p}} = \boldsymbol{p} + \boldsymbol{v}' \cdot f(\Delta t_z, \Delta r_x)$
- f follows from line-plane intersection:

$$f(\Delta t_z, \Delta r_x, \Delta r_y) = \frac{(\Delta t - (p - t))^T \Delta Rn}{\nu'^T \Delta Rn}$$

- Approximate movement of \hat{p} in camera image space with first order Taylor expansion.
- Reshape optical-flow equation to solve for motion offset:

$$\frac{\partial \hat{i}}{\partial x}u_m + \frac{\partial \hat{i}}{\partial y}v_m \approx a_0 \,\Delta t_z + a_1 \Delta r_x$$

Implementation Details

- Initialization by projection and detection of known pattern
- Flow estimation on binarized Sobel images with locally adaptive thresholds
- Iteratively reweighted least squares scheme with Charbonnier penalty

$$x_x, \Delta r_y)$$

 $\Delta \boldsymbol{R} = \begin{pmatrix} 0 & 1 \\ -\Delta r_{y} & \Delta r_{x} \end{pmatrix}$

$$+ a_2 \Delta r_v \approx \hat{I} - I$$

Results

Synthetic data

• Simulation of projection with side length of 50 cm on

	I1			I 2			I 3		
Test	r_x	r_y	t_{z}	r_x	r_y	t_{z}	r_x	r_y	t_{z}
T 1	0.27	0.50	0.20	0.08	0.15	0.08	0.30	0.23	0.09
T 2	0.21	0.13	0.13	0.06	0.14	0.08	0.21	0.18	0.08
T 3	0.35	0.15	0.20	0.06	0.11	0.10	0.22	0.20	0.09
T 4	0.80	0.13	0.39	0.40	0.32	0.07	0.19	0.21	0.08
T 5	2.67	4.04	0.80	0.43	0.80	0.30	1.57	6.95	0.85
T 6	0.57	0.40	0.20	0.34	0.19	0.26	0.34	0.21	0.12

Mean error over sequence given in cm (t_z) or deg. (r_x, r_y)

Real data

- Live tracking runs with about 10 fps.
- variations.
- Dynamic content tracking is possible (e.g. the content of a webbrowser).

Outlook and Conclusion

- - Estimation of 6d pose of a more complex object
 - Optimization of the extrinsic parameters of the system assuming a known object pose in camera space
- Estimation of lighting properties
- Parallizable on GPU due to pixel based calculation.
- Higher frame rates need advanced synchronization.

Extension of approach to 6d tracking of complex objects.

moving plane with distance between 0.9m and 1.8 m.

T1: Small movement (± 1°, 1cm) **T2:** Med. movement (± 5°, 5cm) **T3:** Large movement (± 10°, 10cm) **T4:** T2 + ambient lighting **T5:** T2 + Gaussian blur (7x7) **T6:** T2 + occlusion

• Locally adaptive binarization compensates illumination

General model can be extended to solve similar problems.

