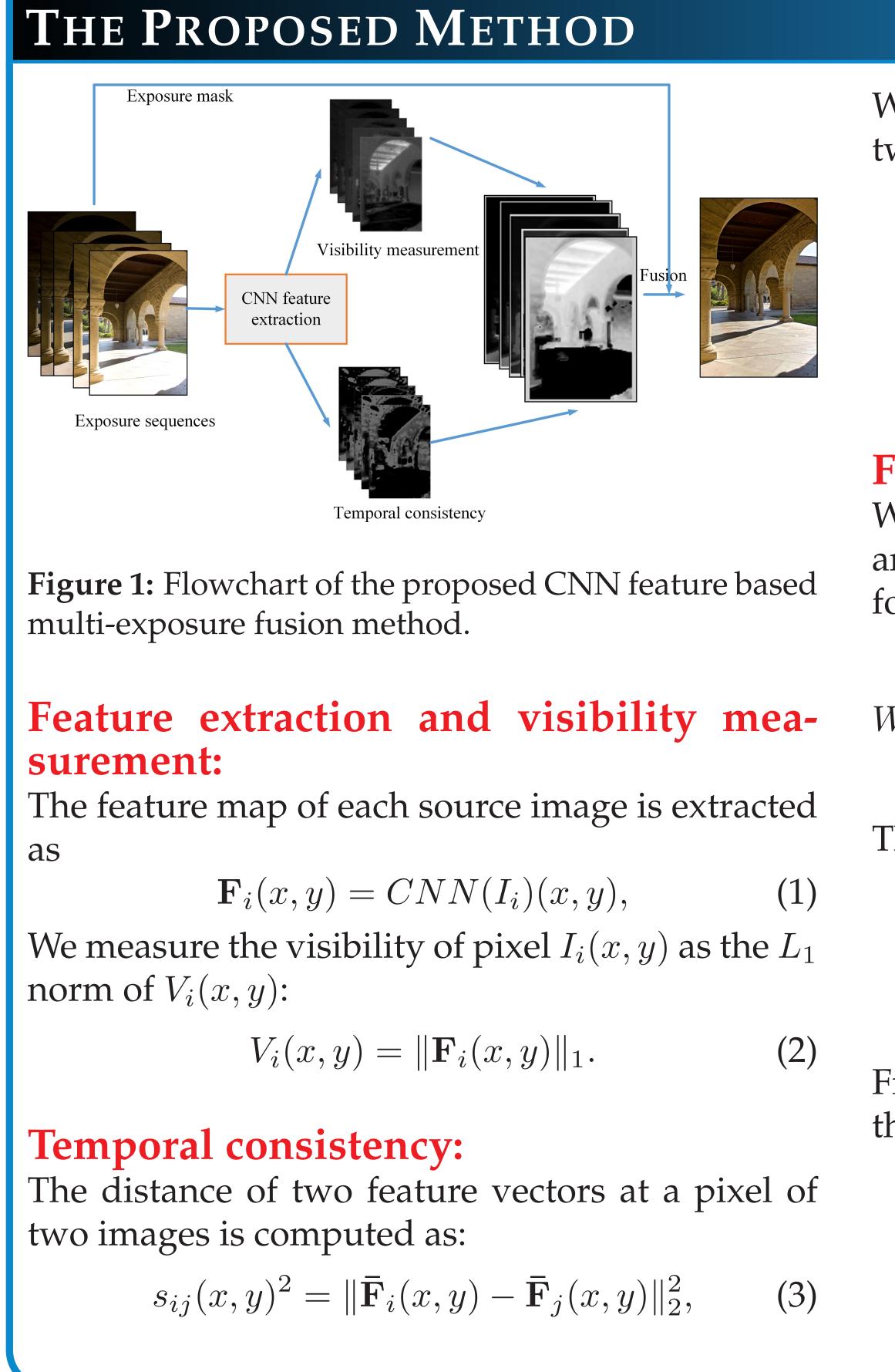
INTRODUCTION

Multi-exposure fusion (MEF) is to fuse a sequence of multi-exposure images to get a HDR-like image.

Motivation: Feature extraction plays a pivotal role in determining the weight map for MEF.

Our work: We investigate the effectiveness of convolutional neural network (C-NN) features for MEF.



MULTI-EXPOSURE FUSION WITH CNN FEATURES

HUI LI AND LEI ZHANG } DEPARTMENT OF COMPUTING THE HONG KONG POLYTECHNIC UNIVERSITY

We use a Gaussian kernel to map the similarity between $\overline{\mathbf{F}}_{\mathbf{i}}(\mathbf{x}, \mathbf{y})$ and $\overline{\mathbf{F}}_{\mathbf{j}}(\mathbf{x}, \mathbf{y})$ into the range of [0, 1]:

$$S_i(x,y) = \sum_{j=1}^{K} exp \frac{-s_{ij}(x,y)^2}{2\sigma^2},$$
 (4)

Fusion:

With the visibility and similarity weight maps *V* and S, we can get the final weight map $W_i(x, y)$ as follows:

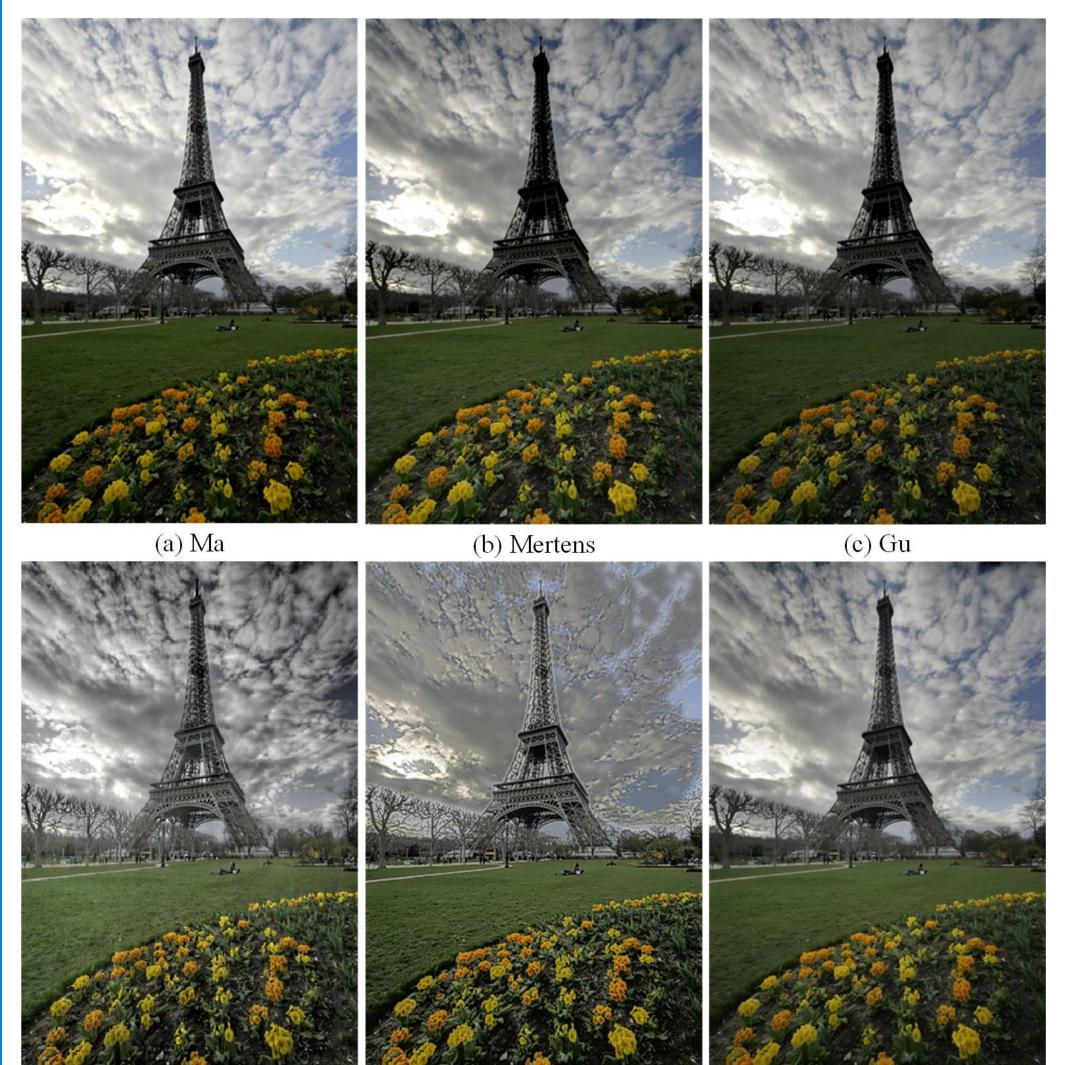
$$V_i(x,y) = \frac{V_i(x,y) \times S_i(x,y) \times M_i(x,y)}{\sum_{j=1}^K V_i(x,y) \times S_i(x,y) \times M_i(x,y) + \alpha}$$
(5)

The used mask is defined as follow:

$$M_i(x,y) = \begin{cases} 1, & \beta < I_i(x,y) < 1 - \beta, \\ 0, & else, \end{cases}$$
(6)

Finally, we fuse the images as follows to produce the MEF output I_f :

$$I_f(x, y) = \sum_{i=1}^{K} I_i(x, y) \times W_i(x, y).$$
 (7)



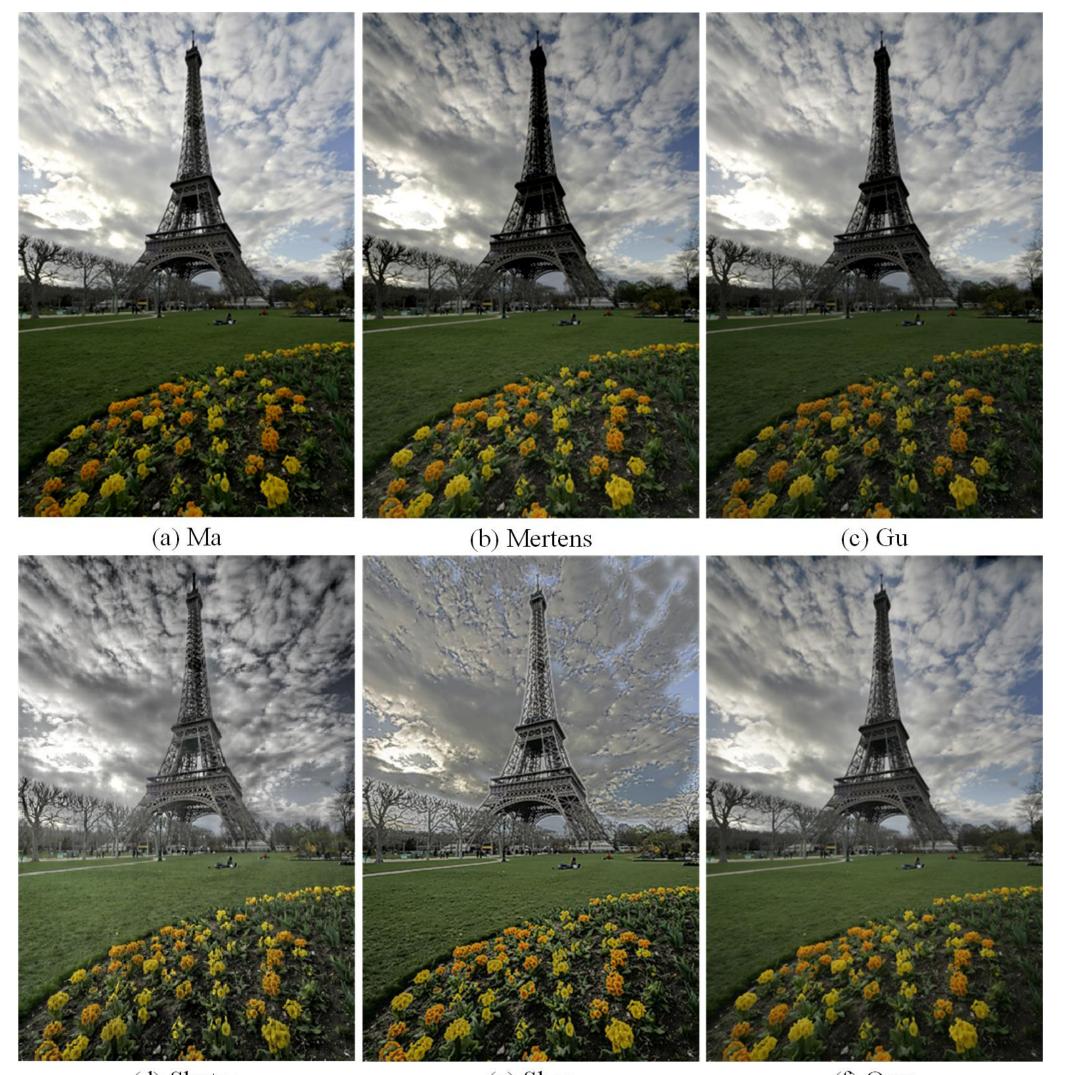


Figure static s

EXPERIMENTAL RESULTS



(e) Shen

(f) Ours

(d) Photomatix

dynamic scene

e 2:	The MEF	results by	competing	methods on a
scer	ne			

twork Type	Denoising(DnCNN)				Super-resolution(VDSR)				Classification(VGG)			
ature Layer	1	3	10	18	1	3	10	18	1	3	10	18
IEF-SSIM	0.869	0.970	0.969	0.965	0.867	0.957	0.846	0.930	0.969	0.620	0.610	0.560

Table 1: The MEF-SSIM scores by different networks at different layers on static scene dataset

Feature type	CNN	SIFT	
MEF-SSIM	0.969	0.952	

Table 2: The MEF-SSIM scores of CNN and traditional features on the static scene dataset

Methods	Gu12	Li12	Shutao13	raman09	Shutao12	Shen14	Mertens09	Ma17	Ours
MEF-SSIM	0.910	0.944	0.965	0.852	0.960	0.753	0.975	0.977	0.969

Table 3: The average MEF-SSIM scores of different methods on the static scene dataset

CONCLUSION & **FUTURE WORK**

This paper made the first attempt to exploit the CNN features for weight design in MEF. We will investigate how to fine-tune the CNN features to make them more effective for MEF applications.

CONTACT INFORMATION

Name: Lei Zhang Email: cslzhang@comp.polyu.edu.hk Website: https://www4.comp.polyu.edu.hk/ cslzhang/

2018 IEEE International Conference on Image Processing

ICIP 2018

(e) Sen

(f) Ours

Figure 3: The MEF results by competing methods on a

Gabor 0.900