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 Semi-Supervised Learning (SSL): leverage both labeled and unlabeled data.

 Motivations

 Labeled data  are:  scarce … costly… time-consuming

 Unlabeled data are: plentiful … cheap … rapidly growing

 Advantages

 Improved performance with reduced labeling efforts.

 NILM systems learning over time.

 Requirements / Limitations:

 Cluster assumption: decision boundaries through sparse regions only !

 Manifold assumption: same labels are close in geometry !

 Lazy training (transductive SSL models).

Unsupervised machine learning

Supervised machine learning

Constrained clustering
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• Lazy learning,
• Unlabeled data & labeling 

constraints
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• Eager learning,
• Labeled & unlabeled data

• Eager learning,
• Labeled data
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Labeled & Unlabeled data
 Labeled data

 Sub-metered loads

(eventless)

 Labeled events

(event-based)

 Unlabeled data

 Aggregate signals

(eventless NILM)

 Segmented signals 

(event-based NILM)
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 Is semi-supervised learning suitable for NILM systems ?

 An SSL model: self-training

 Advantages

 Simple SSL model

 A wrapper model

 Does not require unsupervised components

 Requirements

 A learning algorithm ℎ or a seed classifier 𝑓0

 Confidence-rated predictions

 Limitations

 Separable data/classes

 NILM test dataset: BLUED[1]

 Suitable for event-based NILM

[1] K. Anderson, A. Ocneanu, D. Benitez, D. Carlson, A. Rowe, and M. Berges, “BLUED: a fully labeled public dataset for Event-Based Non-Intrusive load 
monitoring research,” in Proceedings of the 2nd KDD Workshop on Data Mining Applications in Sustainability (SustKDD), Beijing, China, Aug. 2012

Structure of a self-
training model
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 Labeled dataset:

 Unlabeled dataset:

 Training:

 Prediction:

 Selection:

ℒ = 𝒙𝑛, 𝑦
𝑛

𝑛=1

𝑁ℒ
𝒰 = 𝒙𝑛 𝑛=𝑁ℒ+1

𝑁𝒰+𝑁ℒ

Inductive set

ො𝑦 𝑛 = መ𝑓 𝑡 𝒙𝑛 , 𝒙𝑛 ∈ 𝒰

መ𝑓(𝑡) = ℎ(ℒ ∪ መℒ)

ℒ = 𝒙𝑛, 𝑦
𝑛

𝑛=1

𝑁ℒ

𝒰 = 𝒙𝑛 𝑛=𝑁ℒ+1
𝑁𝒰+𝑁ℒ

መℒ = Sel 𝒙𝑛, ො𝑦
𝑛

𝑛=

𝑁𝑎+𝑁𝑏

Validation
dataset Training dataset at 𝑡0

Training dataset at 𝑡1

Transductive set
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 Classification problem:

 The double moon (2-class).

 1000 samples/class.

 Learner/Classifier:

 Support Vector Machine (SVM).

 Gaussian kernel 𝑒− 𝒙𝑖−𝒙𝑗
2

 Minimal labelling (1 sample/class)

 Selection:

 Farthest from boundary.
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 Classification problem:

 The double moon (2-class).

 1000 samples/class.

 Learner/Classifier:

 Support Vector Machine (SVM).

 Gaussian kernel 𝑒− 𝒙𝑖−𝒙𝑗
2

 Minimal labelling (1 sample/class)

 Selection:

 Farthest from boundary.

 300 Iterations: > 70%
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 Classification problem:

 The double moon (2-class).

 1000 samples/class.

 Learner/Classifier:

 Support Vector Machine (SVM).

 Gaussian kernel 𝑒− 𝒙𝑖−𝒙𝑗
2

 Minimal labelling (1 sample/class)

 Selection:

 Farthest from boundary.

 300 Iterations: > 70%

 500 Iterations: > 80%
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 Classification problem:

 The double moon (2-class).

 1000 samples/class.

 Learner/Classifier:

 Support Vector Machine (SVM).

 Gaussian kernel 𝑒− 𝒙𝑖−𝒙𝑗
2

 Minimal labelling (1 sample/class)

 Selection:

 Farthest from boundary.

 300 Iterations: > 70%

 500 Iterations: > 80%

 700 Iterations: > 90%
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 Classification problem:

 The double moon (2-class).

 1000 samples/class.

 Learner/Classifier:

 Support Vector Machine (SVM).

 Gaussian kernel 𝑒− 𝒙𝑖−𝒙𝑗
2

 Minimal labelling (1 sample/class)

 Selection:

 Farthest from boundary.

 300 Iterations: > 70%

 500 Iterations: > 80%

 700 Iterations: > 90%

 1000 Iterations: optimal !
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5%
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 Reduced labeling efforts: how much labeling is needed for near-optimal performance ?

 When should SSL replace purely supervised models ?

 Object of classification: Event-based features ( 𝑑𝑃, 𝑑𝑄 𝑇 feature vectors)

 Classifier: Support Vector Machine (SVM) with a linear kernel

 Selection: nearest to class mean (based on the labeled samples)

 1 sample per class per iteration, 3 iterations

 Dataset: BLUED dataset (refined)

 Phase A: 749 samples, 23 classes

 Phase B: 1284 samples, 45 classes
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 Reduced labeling efforts: how much labeling is needed for near-optimal performance ?

 When should SSL replace purely supervised models ?

SSL is no longer required !
(~12% of labeling)

Phase BPhase A

Manifold assumption
violation
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 Effect of increasing unlabeled dataset.

 Test dataset is fixed and includes inductive and transductive inference tests.

 Object of classification: Event-based features ( 𝑑𝑃, 𝑑𝑄 𝑇 feature vectors)

 Classifier: Support Vector Machine (SVM) with a linear kernel

 Selection: nearest to class mean (based on the labeled samples)

 1 sample per class per iteration, 3 iterations

 Dataset: BLUED dataset (refined)

 Phase A: 749 samples, 23 classes

 Phase B: 1284 samples, 45 classes

5%

Transductive set

Test dataset

5%

5%

5%

Inductive setLabeled
set
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Learning
phases

 Effect of increasing unlabeled dataset.

 Test dataset is fixed and includes inductive and transductive inference tests.

(4.67% of labeling in both phases)

Phase BPhase A

Effects of cluster-
assumption violation

Irrelevant labeling
(samples behind support vectors)

Irrelative 
labeling

Learning
phase

Unlabeled samples have no effect 
on purely supervised models

Unlabeled samples have no effect 
on purely supervised models
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