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53D STACKING SEGMENTAL P3D FOR ACTION QUALLTY ASSESSMENT
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NEW PROBLEM
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http://www.youtube.com/watch?v=cL8ZEdTQkVQ

BACKGROUND: VIDEQ REPRESENTATION LEARNING

Video action assessment in our case is to predict a score s given a video V of one
diving performance. As a supervised learning model, CNN is supposed to learn a
mapping f(-) from V to s from training data such that s = f(V). While it looks
like that the action quality score is a function of the action video, essentially
the video is a representation of the player’s skill. As a result, there also exists
V = g(s) where g(-) is a generative function: given a certain skill s, the generated
action is recorded in the video V. However, in this paper, we are trying to learn
the underlying representation of the skill s from the video V. Namely, if the
mapping f(-) learned by CNN is good enough, it well characterizes the inverse
video generation process as s = f(V) = f(g(s))-



EXISTING WORK: 3D CNN FOR VIDEO REPRESENTATION LEARNING

Video representation learning
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2D Convolutional Neural Network
Large-scale Video Classification with Convolutional Neural Networks. [Karpathy, CVPR"14]
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Two-Stream Convolutional Networks for Action Recognition in Videos. [Simonyan, NIPS'14]
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Figure 1: Two-stream architecture for video classification.



Video representation learning

2011 ==
2D CNN + LSTM (LRCN)
Long-term Recurrent Convolutional Networks for Visual
2012=p= Recognition and Description [Donahue, CVPR'15]
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Video representation learning: from 2D CNN to 3D CNN

ResNet 152 235 MB  64.6%
-------- : C3D 11 321 MB  61.1%
C3D 100+ ~3 GB --
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3D CNN:

[FAIR & NYU, ICCV'15]
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INTUITION: 3D CONVOLUTION FACTORIZATION

Furthermore, for a convolution network, we have I(x) = >\, u;(x) * v;(x)

where * denotes the operation of convolution. The operation of u; convolving
with v; can be written as the matrix convolution in the dimension of npizers X
(Npizels * SiZ€fier) to induce a 4D tensor:

fi(mayat) — ui(X7Y7t) * I(X7Y7t) = ui(X7 Y) ) Vj(t) * I(X7y7t) (2)

Onice, given the connection from matrix product to matrix convolution, if

we can prove the optimality of deep 3D networks, intuitively we can adapt the
proof to deep 3D CNNss.



STATUS QUO: 3D CNN IS NOW WIDELY USED
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3D CNN is not particularly designed for video analysis. The patch-level 3D CNN has become a hard core
formedical image analysis.

Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In CVPR, 2017.
Kinetics forms the basis of an international human action classification competition being organised by ActivityNet. 9


http://activity-net.org/challenges/2017/index.html

16 frameslvideo Predict Truth

QUR FIRST ATTACK

92.2 || 91.2
Adding a fully-connected layer on
top of the 2nd last layers of P3D for 923 || 94.0
regression. A training set of
16-frame clips sampled from raw 61.8 || 64.3
videos of the UNLV-Diving dataset P3D
are input into the revised P3D
network equipped with weights 50.7 || 52.4
pre-trained on the Kinectics
dataset. The scores predicted by
the network (in blue) are compared SR || e
with the ground truth in red.
78.4 || 79.8
Our P3D-consecutive + FC regression, full video [0.43 + 0.09
Our P3D-spaced + FC regression on full video [0.80 + 0.01




If a 3D CNN is trained for a preset number of frames, then it
expects that number of frames at testing. The case is also true for
ID [0 AM P lI N G fine-tuning pre-trained networks.

Video sampling. As P3D is designed to process clips of 16 frames, fine-turning
the pre-trained P3D model needs clips of 16 frames. There are three effective
strategies for sampling 16 frames from a video. In Sec. 4.3 we will compare them.
Firstly, normally a 3D network needs to be trained for many epochs on small
datasets. A good strategy turns out to be randomly stopping a sliding window of
16 consecutive frames along the temporal axis, which not only keeps the action
smooth and coherent but also introduces certain randomness during each epoch.
Thus, it also augments the data. We called models trained and tested using
this strategy as P3D-consecutive. There is information loss during the random
consecutive sampling. P3D can only read a 16-frame clip per video and thus can
hardly see all the four stages relevant with scoring, while all influence the score.
A bad case is that the first stage is sampled. Secondly, as video summarization,
equally spaced sampling collectively represents the video and cover all stages,
though sacrificing the temporal coherence. This model is called P3D-spaced.

11



ISTING WORK: WHAT'S P3D]

Pseudo-3D Residual Networks (P3D)

[Yao & Mei, ICCV'T7]
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Pseudo-3D Residual Networks (P3D) [Qiu, Yao, Mei, ICCV'17]

3x3x3 Conv

1x3x3 Conv

3x1x1 Copv

Reduce model size
Fully leverage pre-learned

2D CNN from image
Enhance the structural
diversity




QUR IMPLEMENTATION DETALLS

P3D. We use a PyTorch implementation of P3D-199 model* with weights pre-
trained on Kinetics and revised it into a regression model. The P3D-consecutive
model is trained and tested on 16 consecutive frames that randomly selected
from the entire video. For the P3D-spaced model, frames are sampled from the
video with equal space. The selected 16 frames are then resized into 160 x 160 to
be input into models during training and testing. Residual units are in the order
of P3D-serial P3D-parallel P3D-composition. Dropout with rate 0.5 is applied
on the top FC layer. The MSE loss is used as the loss function in training. We
use Adam with learning rate of 0.0001 as our optimizer. Models are trained for
90 epochs with learning decay factor of 0.1 for every 30 epochs.

14



PERFORMANCE COMPARISON

Methods Correlation
Hierarchical ConvISA [32] (ICCV 2011) 0.19
Pose+DCT+SVR (best in [4], ECCV 2014) 0.53
Entropy feature ApEnFT [6] (BMVC 2015) 0.45
C3D+LSTM [2] (CVPRW 2017) 0.36
C3D+LSTM+SVR [2] (CVPRW 2017) 0.66
C3D+SVR (the best in [2], CVPRW 2017) 0.74

Our P3D-consecutive + FC regression, full video [0.43 + 0.09

Our P3D-spaced + FC regression on full video [0.80 4+ 0.01

15



EXISITING WORK [2): LEARNING T0 SCORE OLYMPIC EVENTS

Video
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[2] Parmar, P., Morris, B.: Learning to score olympic events. In CVPR 2017 Workshops. 16



EXISTING WORK [4): ASSESSING THE QUALITY OF ACTIONS

Gold Medal Silver Medal 2nd to last place Last place

J

Our Score: 98.68 Our Score: 83.25 Our Score: 56.10 Our Score: 39.60

Judge Score: 96.35 Judge Score: 93.13 Judge Score: 43.72 Judge Score: 37.30
. 'SR SR e .
High Action Quality Low Action Quality

[4] Pirsiavash, H., Vondrick, C., Torralba, A.: Assessing the quality of actions. In ECCV 2014.

17



PROPOSING A BETTER APPROACH + UsSWRotLRIoams

e Use four models to extract the score of videos

features for every video (one
model on one stage, so we have
4 1-D feature for one video)

LR or SVR

e Average these 4 features into 1
Segment-level [ P3D | ﬁ

f

ED-TCN
. Frame-level ResNet |

(1-4), train a P3D
independently

Preparations Jumping Dropping Entering into water Ending

e Use TCN to segment tge
video into five stages (0-4)

While our approach is not the first to score sports actions, to our knowledge
it is the first to score them stage by stage. 18



TEMPORAL SEGMENTATION USING TEMPOAL COVNET (TCN)

The task of temporal segmentation in our case study is to classify frames into
5 classes with the intra-class continuity constraint. Taking the frame-level 2D
CNN features as inputs, TCN can return five segments (one preparation stage,
three action stages and one background stage) for a diving video. Suppose an
input video has K frames and the output feature is D-dimensional, then the
input to TCN can be denoted as Xy € RP>*?" where the subscript is the count
of layers traversed till now (below we use [ = 0,1, ... for layer). For the ED-TCN
[13], the temporal convolution is represented as

Xj = f(Wl * X1+ b) (6)

where X; € RMixXTi Ny = D, Ty = K. The convolution filters are parameterized
by W = {Wz-}fvzll, w; € R4XNi—1 and b € RM for N; being the number of
convolution filters at [-th layer, 7T} being the number of features, d; being the
filter length at [-th layer and f(-) being the activation function.

Colin Lea, Michael Flynn, Rene Vidal, Austin Reiter, Gregory D. Hager. Temporal Convolutional Networks for
Action Segmentation and Detection. CVPR 2017.
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WHAT'S THE DIFFERENCE?

Authors of [4] run SVR on human poses to
score their MIT Diving dataset upon which

16 frameslvideo Predict Truth

authors of [2] build the UNLV-Dive dataset. 92.2 || 91.2
The C3D+SVR approach of [2] has shown
significant improvements over previous 923 || 94.0
works [6] using the approximate entropy '
features.

61.8 || 64.3
[2] Parmar, P., Morris, B.: Learning to score ‘ P3D
olympic events. In CVPR 2017 Workshops. 50.7 || 524
[4] Pirsiavash, H., Vondrick, C., Torralba, A.:
Assessing the quality of actions. In ECCV 2014. 54.6 || 54.4
[6] Venkataraman, V., Vlachos, I., Turaga, P.:
Dynamical regularity for action analysis. In 78.4 || 79.8
BMVC 2015.
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PERFORMANCE AGAIN!

Per-Stage Sampling P3D-center.
If the center frame of each stage is
given, we choose the P3D input to
be the 16 frames that are centered
at the middle of each stage and
have a spacing of 1. They serve as
a summarization of this stage and
will be input into the P3D-center
model of that stage.

Methods Correlation
Hierarchical ConvISA [18] (ICCV 2011) 0.19
Pose+DCT+SVR (best in [1], ECCV 2014) 0.53
Entropy feature ApEnFT [3] (BMVC 2015) 0.45
C3D+LSTM [2] (CVPRW 2017) 0.36
C3D+LSTM+SVR [2] (CVPRW 2017) 0.66
C3D+SVR (the best in [2], CVPRW 2017) 0.74
Our P3D-consecutive + FC regression, full video 043 4+ 0.09
Our P3D-spaced + FC regression on full video 0.80 = 0.01
Our P3D-center + FC regression, jumping stage 0.49 = 0.04
Our P3D-center + FC regression, dropping stage 0.60 £0.03
Our P3D-center-FC, jumping-dropping combined | 0.47 + 0.04
Our P3D-center + FC on entering into water stage | 0.82 £ 0.01
Our P3D-center + FC, videos except ending stage | 0.56 4= 0.04
Our P3D-center + FC regression, ending stage 0.77 1002
LR on scores output by stage-wise P3D-center-FC 0.82
SVR on score output by stage-wise P3D-center-FC 0.84
LR on average of stage-wise P3D-center features 0.81
SVR on average of stage-wise P3D-center features 0.86
Concatenation of stage-wise P3D-center features 0.86

Table 1. Pearson correlation comparison on official split-4.




VISUALLZATION OF TCN SEGMENTATION INTERMEDIATE RESULT

Truth Stage 1: Jumping I Stage 2: Dropping | Stage 3: Entering into water I Stage 4: Ending |
Frame # 0 50 65 85 96 136
ED-TCN Stage 1: Jumping l Stage 2: Dropping l Stage 3: Entering into water I Stage 4: Ending |
Frame# ¢ 52 62 87 96 136

Temporal model Acc (%)
Bi-LSTM [33) 05.7
ED-TCN 96.6
Tricornet (TCN+Bi-LSTM) [34]| 96.0

Table 2. Accuracy comparison of temporal classification.
22



AN

Questions and suggestions!

Contact: xxiang@cs.jhu.edu
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