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Introduction

Objective

Improving the performance of automatic stingray detection in the aerial images captured by an
UAV to help ecological researchers in counting the number of stingray.

Problems

A wide range aerial imagery (high resolution) limits the image batch number used for training
in a deep learning object detection model (Faster R-CNN in this paper) due to memory issue.

e Stingray is always sparse in each image. It limits the batch number of the object for training.

* Using limited amount of training images results in worse detection results.

Solution

We propose a new data augmented method, called Conditional Generative Latent Optimization
(C-GLO), to generate sufficient amount of stingray samples for reaching better object detection
on marine aerial images.

Method Overview
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The Architecture of C-GLO
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Given unsupervised training images I ={I{, - - -, Iy }, C-GLO trains a generator ¢(with
the input z, c and network weights W), such that the following objective is minimized:

N
e(W,z,c) = loss(p(W,z;,c;) — I;)
)

wherez=1{z, z,, - - -, Zy}. c = 0 indicates sea surface, and c =1 indicates stingray.

The training process of C-GLO is :

1. Given z, ¢, find W to reduce the total reconstruction loss of I .
2. Given W, ¢; , find z; to reduce the reconstruction loss of I; , VI .

The above two steps are executed iteratively.
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Results & Comparison
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Faster R-CNN Detection Performance (AP)

Network Baseline Ours-128 Ours-256 Ours-512
ZF 78.89 82.75 82.42 83.04
VGG-16 84.59 86.14 86.61 86.43

Conclusion

 We introduce a data augmentation method, C-GLO to fuse background patches and
foreground objects.

 Experimental results reveal that the detection performance can be improved our approach.

 C-GLO performs more stable than GAN-based methods do in convergence of training.




