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Introduction

•Canonical correlation analysis (CCA) is a technique
for studying the relationship between two sets of
variables.
•Few studies on CCA incorporate prior information
available for fMRI data.
•Here we propose a projection CCA method by cre-
ating a basis for a span that better characterizes
the fMRI data-set.
•The proposed method can be seen as a regularized
CCAmethod where regularization is introduced via
basis expansion.

Background: CCA

Proposed Method

maxu,v u>C−1/2
xx CxyC−1/2

yy v
s.t. u>u = v>v = 1,
a = C−1/2

xx u, f = C−1/2
yy v

(1)

•The goal is to incorporate prior information
matrix B ∈ RN×K in the CCA objective function.

u = Bθ and v = Bψ. θ,ψ ∈ RK

•Empirical results show that few selected discrete
cosine transform (DCT) bases are suitable for B.

Define T = C−1/2
xx CxyC−1/2

yy

L =
∥∥∥T− suv>

∥∥∥2
F

=
∥∥∥T− sBθψ>B>∥∥∥2

F
(2)

The objective function (2) is solved in two stages:

1. Minimizing L over ψ and setting B>B =
R>BRB yields θ̃ as right singular vector of
(R−1

B )>B>TBR−1
B

2. Minimizing L over θ and setting B>B =
R>BRB yields ψ̃ as right singular vector of
(R−1

B )>B>T>BR−1
B

Statistical significance analysis

Barlett’s statistical test is employed to calculate the
significance of each recovered voxel time series.

L = −
[
P − 1

2
(N + (N − 1) + 3)

]
r∑
j=1

log(1− s2
j)

(3)

• sj: jth nonzero canonical correlation coefficient
•L ∼ χ2 with N ×N − 1 degrees of freedom

Algorithm Overview

Algorithm 1: PCCA Algorithm
Input: Training data X, Y.
Output: Θ and Ψ containing r pairs of right

singular vectors θr and ψr.
µx = 1

P

∑P
p=1 xp and µy = 1

P

∑P
p=1 yp

for p ∈ [1, P ] do
xp← xp − µx
yp← yp − µy
end
Perform singular value decomposition (SVD) of
(R−1

B )>B>TBR−1
B = USV > ;

Θ̃ = V (:, 1 : r) and estimate Θ = R−1
B Θ̃

Ψ̃ = U(:, 1 : r) and estimate Ψ = R−1
B Ψ̃

Simulation Results
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Figure 1: a) Ground truth b) standard CCA, c) the proposed
PCCA at SNR = 10 dB.

Table 1: Average correlations of recovered source signals.

SNR (dB) Standard CCA Projection CCA
R̂1 R̂2 R̂3 R̂4 R̂1 R̂2 R̂3 R̂4

0 0.493 0.835 0.353 0.816 0.964 0.939 0.937 0.928
5 0.531 0.949 0.542 0.862 0.938 0.941 0.926 0.956
10 0.855 0.960 0.666 0.699 0.940 0.950 0.925 0.955
15 0.895 0.701 0.717 0.682 0.921 0.960 0.907 0.905

Mean 0.693 0.861 0.569 0.765 0.941 0.947 0.924 0.936
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Figure 2: ROC curves obtained using CCA, regularized CCA
(RCCA) and PCCA (proposed) shown at SNR = 0(left) and
SNR= 15(right), where TP : true positive, FP: false positives.

Resting-state fMRI analysis

Figure 3: Activation maps of default mode networks (DMN)
obtained using CCA (left) and PCCA (proposed) (right).

Table 2: MNI coordinates of selected seed voxels of DMN and
their correlation coefficients with estimated time series.

MNI
x y z CCA PCCA

Ventral medial prefrontal cortex 6 70 14 0.922 0.997
Precuneus cortex -8 -60 14 0.876 0.960

Dorsal posterior cingulate 0 -24 38 0.937 0.945
Ventral posterior cingulate 2 -46 28 0.924 0.992

Superior frontal gyrus 8 50 38 0.886 0.912
Mean 0.909 0.961

Conclusion

•Spatio-temporal fMRI datasets are structurally
smooth.
•Classical CCA methods ignore this structure.
•A regularized rank-1 matrix approximation
problem is proposed for CCA via basis expansion.
•To estimate canonical variates this problem was
solved through alternating least squares.


