

Introduction

- Canonical correlation analysis (CCA) is a technique for studying the relationship between two sets of variables.
- Few studies on CCA incorporate prior information available for fMRI data.
- Here we propose a projection CCA method by creating a basis for a span that better characterizes the fMRI data-set.
- The proposed method can be seen as a regularized CCA method where regularization is introduced via basis expansion.

Background: CCA

Define:

PCCA: A Projection method for effective fMRI data analysis

Muhammad Ali Qadar & Abd-Krim Seghouane

Department of Electrical and Electronic Engineering Melbourne School of Engineering, The University of Melbourne, Australia

Proposed Method

$$\max_{\mathbf{u},\mathbf{v}} \mathbf{u}^{\top} \mathbf{C}_{xx}^{-1/2} \mathbf{C}_{xy} \mathbf{C}_{yy}^{-1/2} \mathbf{v}$$

s.t. $\mathbf{u}^{\top} \mathbf{u} = \mathbf{v}^{\top} \mathbf{v} = 1,$ (1)
 $\mathbf{a} = \mathbf{C}_{xx}^{-1/2} \mathbf{u}, \ \mathbf{f} = \mathbf{C}_{yy}^{-1/2} \mathbf{v}$

• The goal is to incorporate prior information matrix $\mathbf{B} \in \mathbb{R}^{N \times K}$ in the CCA objective function.

 $\mathbf{u} = \mathbf{B}\boldsymbol{\theta}$ and $\mathbf{v} = \mathbf{B}\boldsymbol{\psi}$. $\boldsymbol{\theta}, \boldsymbol{\psi} \in \mathbb{R}^{K}$

• Empirical results show that few selected discrete cosine transform (DCT) bases are suitable for \mathbf{B} .

Define
$$\mathbf{T} = \mathbf{C}_{xx}^{-1/2} \mathbf{C}_{xy} \mathbf{C}_{yy}^{-1/2}$$

$$\mathcal{L} = \left\| \mathbf{T} - s \mathbf{u} \mathbf{v}^{\mathsf{T}} \right\|_{F}^{2} = \left\| \mathbf{T} - s \mathbf{B} \boldsymbol{\theta} \boldsymbol{\psi}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \right\|_{F}^{2} \quad (2)$$

The objective function (2) is solved in two stages:

Minimizing \mathcal{L} over $\boldsymbol{\psi}$ and setting $\mathbf{B}^{\top}\mathbf{B}$ = $\mathbf{R}_{B}^{\top}\mathbf{R}_{B}$ yields $\tilde{\boldsymbol{\theta}}$ as right singular vector of $(\mathbf{R}_{\mathbf{B}}^{-1})^{\top}\mathbf{B}^{\top}\mathbf{T}\mathbf{B}\mathbf{R}_{\mathbf{B}}^{-1}$

Minimizing \mathcal{L} over $\boldsymbol{\theta}$ and setting $\mathbf{B}^{\top}\mathbf{B} =$ $\mathbf{R}_B^{\top} \mathbf{R}_B$ yields $\hat{\boldsymbol{\psi}}$ as right singular vector of $(\mathbf{R}_{\mathbf{B}}^{-1})^{\top}\mathbf{B}^{\top}\mathbf{T}^{\top}\mathbf{B}\mathbf{R}_{\mathbf{R}}^{-1}$

Statistical significance analysis

Barlett's statistical test is employed to calculate the significance of each recovered voxel time series.

$$L = -\left[P - \frac{1}{2}\left(N + (N - 1) + 3\right)\right] \\ \sum_{j=1}^{r} \log(1 - s_j^2)$$
(3)

• s_j : j^{th} nonzero canonical correlation coefficient • $L \sim \chi^2$ with $N \times N - 1$ degrees of freedom

Algorithm Overview

PCCA at SNR = 10 dB.

Table 1: Average correlations of recovered source signals.

SNR (dB)	Standard CCA				Projection CCA				
	\hat{R}_1	\hat{R}_2	\hat{R}_3	\hat{R}_4	\hat{R}_1	\hat{R}_2	\hat{R}_3	\hat{R}_4	
0	0.493	0.835	0.353	0.816	0.964	0.939	0.937	0.928	
5	0.531	0.949	0.542	0.862	0.938	0.941	0.926	0.956	
10	0.855	0.960	0.666	0.699	0.940	0.950	0.925	0.955	
15	0.895	0.701	0.717	0.682	0.921	0.960	0.907	0.905	
Mean	0.693	0.861	0.569	0.765	0.941	0.947	0.924	0.936	

THE UNIVERSITY OF MELBOURNE

	MNI				
	X	У	Z	CCA	PCCA
al medial prefrontal cortex	6	70	14	0.922	0.997
Precuneus cortex	-8	-60	14	0.876	0.960
orsal posterior cingulate	0	-24	38	0.937	0.945
ntral posterior cingulate	2	-46	28	0.924	0.992
Superior frontal gyrus	8	50	38	0.886	0.912
		Mea	n	0.909	0.961

Conclusion

- Spatio-temporal fMRI datasets are structurally smooth.
- Classical CCA methods ignore this structure.
- A regularized rank-1 matrix approximation
- problem is proposed for CCA via basis expansion. • To estimate canonical variates this problem was solved through alternating least squares.