

Introduction

In this paper, a reweighed sparse low-rank nonnegative tensor factorization (RSLRNTF) method is proposed to restore an HSI. It takes an HSI as a third-order tensor and factorizes it into the combination of a few component tensors where each one is the outer product of a low-rank matrix (coding matrix) and a vector (atom). A reweighed L_1 norm is added to coding matrices to enforce their sparsity. The low-rankness in both spatial and spectral domain is in line with the spatial and spectral correlation in an HSI. Furthermore, we add nonnegativity constraint to both coding coefficients matrices and dictionary to learn parts-based representation of HSI, which facilitates preserving local structure information.

RSLRNTF

Figure 1: Framework of proposed method.

$$\min f(\mathbf{A}, \mathbf{B}, \mathbf{C}) = \|\mathcal{Y} - \sum_{r=1}^{R} \mathbf{A}_{r} \mathbf{B}_{r}^{\mathrm{T}} \circ \mathbf{c}_{r}\|_{F}^{2} + \frac{\delta}{2} \|\mathbf{A}\mathbf{B}^{\mathrm{T}} - \mathbf{1}_{\mathbf{I} \times \mathbf{J}} + \lambda \sum_{r=1}^{R} \|\mathbf{W}_{r} \odot (\mathbf{A}_{r} \mathbf{B}_{r}^{\mathrm{T}})\|_{1} \quad s.t. \quad \mathbf{A}, \quad \mathbf{B},$$

where, $\mathbf{A} = [\mathbf{A}_1 \cdots \mathbf{A}_R]$, $\mathbf{B} = [\mathbf{B}_1 \cdots \mathbf{B}_R]$, $[\mathbf{c}_1 \cdots \mathbf{c}_R]$ and \odot is element-wise product.

Highlights

- $\blacktriangleright \mathbf{A}_r \mathbf{B}_r^{\mathrm{T}}$: low-rank coding matrix derives spati rankness.
- C: low-rank dictionary represents spectral low-ran
- \blacktriangleright $\|\mathbf{W}_r \odot (\mathbf{A}_r \mathbf{B}_r^T)\|_1$: reweighed L_1 norm makes codin sparser.
- ► $\frac{\delta}{2} \|\mathbf{A}\mathbf{B}^{\mathrm{T}} \mathbf{1}_{\mathbf{I}\times\mathbf{J}}\|_{F}^{2}$: avoid trivial solutions.
- Nonnegativity constraints promote local details pre
- Tensor model preserves all the information in an H

Hyperspectral imagery denoising via reweighed sparse low-rank nonnegative tensor factorization

Fengchao Xiong¹ Jun Zhou² Yuntao Qian¹

¹ College of Computer Science, Zhejiang University, Hangzhou, China ² School of Information and Communication Technology, Griffith University, Nathan, Australia

	Update rules			
	$\mathbf{A} \leftarrow \mathbf{A}. * (\mathbf{Y}_{(1)}^{\mathrm{T}})$ $\mathbf{B} \leftarrow \mathbf{B}. * (\mathbf{Y}_{(2)}^{\mathrm{T}})$ $\mathbf{C} \leftarrow \mathbf{C}. * (\mathbf{Y}_{(3)}^{\mathrm{T}})$ $\mathbf{U}_{r} \leftarrow \mathbf{U}_{r}. * (\boldsymbol{\mu} \mathbf{A})$ $\mathbf{V}_{r} \leftarrow \mathbf{V}_{r}. * (\boldsymbol{\mu} \mathbf{A})$ $\mathbf{W}_{r} \leftarrow 1./(\mathbf{U}_{r} \mathbf{V})$	$\mathbf{M} + \delta 1_{\mathbf{I} imes}$ $\mathbf{M} + \delta 1_{\mathbf{I} imes}$ $\mathbf{M})./(\mathbf{C} \mathbf{N}$ $\mathbf{A}_r)./(\mu \mathbf{U}_r$ $\mathbf{S}_r)./(\lambda \mathbf{W}$ $\mathbf{T}_r^{\mathrm{T}} + \epsilon)$	$\mathbf{J}^{\mathrm{T}}\mathbf{B} + \mu \mathbf{U}$ $\mathbf{J}^{\mathrm{T}}\mathbf{A} + \mu \mathbf{V}$ $\mathbf{I}^{\mathrm{T}}\mathbf{M}$) $(\mathbf{I}^{\mathrm{T}}\mathbf{M})$ $(\mathbf{I}^{\mathrm{T}}\mathbf{M})$ $(\mathbf{I}^{\mathrm{T}}\mathbf{M})$	$(\mathbf{A}\mathbf{M}^{\mathrm{T}}\mathbf{M}^{\mathrm{T}}\mathbf{M}^{\mathrm{T}}\mathbf{M}^{\mathrm{T}}\mathbf{M}^{\mathrm{T}}\mathbf{M}^{\mathrm{T}}\mathbf{M}^{\mathrm{T}}\mathbf{M}^{\mathrm{T}}\mathbf{M}^{\mathrm{T}}\mathbf{M}^{\mathrm{T}}\mathbf{M}^{\mathrm{T}}\mathbf{M}^{\mathrm{T}}$
	Experimental results on simulated da Table 1: MPSNR of Different Methods or			
$\ _{F}^{2}$ $\mathbf{C} \ge 0$	Noise Ori LRN LR1 PARA TD LRT2 RSL	variance σ ginal /R [1] V [2] FAC [3] L [4] DTV [5] RNTF	$ \in [0, 0.05] $ 34.49 43.12 43.04 38.58 38.99 42.63 43.87	$\sigma \in [0, 0.1]$ 26.89 39.12 37.63 37.51 36.61 39.14 40.01
, \mathbf{C} =	Visual compar	ison on	simulat	ed data
tial low-	<image/>			
nkness.	(a) Clean	(b) N	loisy	(c) LRMR
ng matrix				
cocrving.	(e) PARAFAC [3]	(f) T[DL [4]	(g) LRTDT
HSI.	Figure 2: Denoising results of band 25 in simulated			

Computational Intelligence Laboratory, Institute of Artificial Intelligence, Zhejiang University

(c) LRTV [2]

(g) RSLRNTF

{fcxiong,ytqian}@zju.edu.cn