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Introduction

In this paper, a reweighed sparse low-rank nonnegative tensor factorization (RSLRNTF) method is proposed to restore an HSI. It takes an HSI as a third-order tensor and factorizes it into the combination of a few
component tensors where each one is the outer product of a low-rank matrix (coding matrix) and a vector (atom). A reweighed L1 norm is added to coding matrices to enforce their sparsity. The low-rankness in
both spatial and spectral domain is in line with the spatial and spectral correlation in an HSI. Furthermore, we add nonnegativity constraint to both coding coefficients matrices and dictionary to learn parts-based
representation of HSI, which facilitates preserving local structure information.
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Figure 1: Framework of proposed method.
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where, A = [A1 · · ·AR], B = [B1 · · ·BR], C =
[c1 · · · cR] and � is element-wise product.

Highlights

I ArB
T
r : low-rank coding matrix derives spatial low-

rankness.
I C: low-rank dictionary represents spectral low-rankness.
I ‖Wr�(ArB

T
r )‖1: reweighed L1 norm makes coding matrix

sparser.

I δ
2‖ABT − 1I×J‖2F : avoid trivial solutions.

I Nonnegativity constraints promote local details preserving.

I Tensor model preserves all the information in an HSI.

Update rules
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Experimental results on simulated data

Table 1: MPSNR of Different Methods on Simulated Data.

Noise variance σ ∈[0, 0.05] σ ∈[0, 0.1] σ ∈[0, 0.15]
Original 34.49 26.89 24.84

LRMR [1] 43.12 39.12 36.63
LRTV [2] 43.04 37.63 36.26

PARAFAC [3] 38.58 37.51 35.99
TDL [4] 38.99 36.61 31.75

LRTDTV [5] 42.63 39.14 36.94
RSLRNTF 43.87 40.01 37.21

Visual comparison on simulated data

(a) Clean (b) Noisy (c) LRMR [1] (d) LRTV [2]

(e) PARAFAC [3] (f) TDL [4] (g) LRTDTV [5] (h) RSLRNTF

Figure 2: Denoising results of band 25 in simulated data when σ ∈ [0− 0.1].

Experimental results on real-world data

(a) Noisy (b) LRMR [1] (c) LRTV [2]

(d) PARAFAC [3] (e) TDL [4] (f) LRTDTV [5] (g) RSLRNTF

Figure 3: Denoising results of band 208 in the Urban data set.
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